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Abstract—Speech emotion recognition (SER) systems often
struggle in real-world environments, where ambient noise
severely degrades their performance. This paper explores a novel
approach that exploits prior knowledge of testing environments to
maximize SER performance under noisy conditions. To address
this task, we propose a text-guided, environment-aware training
where an SER model is trained with contaminated speech samples
and their paired noise description. We use a pre-trained text
encoder to extract the text-based environment embedding and
then fuse it to a transformer-based SER model during training
and inference. We demonstrate the effectiveness of our approach
through our experiment with the MSP-Podcast corpus and real-
world additive noise samples collected from the Freesound and
DEMAND repositories. Our experiment indicates that the text-
based environment descriptions processed by a large language
model (LLM) produce representations that improve the noise-
robustness of the SER system. With a contrastive learning (CL)-
based representation, our proposed method can be improved by
jointly fine-tuning the text encoder with the emotion recognition
model. Under the -5dB signal-to-noise ratio (SNR) level, fine-
tuning the text encoder improves our CL-based representation
method by 76.4% (arousal), 100.0% (dominance), and 27.7%
(valence).

Index Terms—Speech emotion recognition, noise-robustness,
text-guided training, multi-modal

I. INTRODUCTION

SPEECH emotion recogntion (SER) systems have highly
improved with the help of pre-trained speech representa-

tion models [1]–[3] and the creation of larger emotional speech
databases [4]–[7]. Recently, there has been increased interest
in deploying SER systems in real-world applications, opening
opportunities across many domains, such as digital assistants
[8], health care applications [9], and security and defense. One
important barrier in this direction is the degradation of SER
performance in real-world environments caused by multiple
types of non-stationary background noise [10].
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Several solutions have been proposed to improve the ro-
bustness of SER systems against acoustic noise. The solutions
include data augmentation [11]–[13], feature enhancement
[14], [15], feature selection [16], [17], and domain adapta-
tion approaches [18], [19]. Since transformer-based speech
representation models have been successfully used in speech
problems [1]–[3], many studies have also worked on increasing
the noise robustness of SER systems built with pre-trained
speech representation models [20], [21]. These approaches can
increase the performance of transformer-based SER models in
target noisy conditions. However, it is challenging to use these
models in scenarios with multiple noisy environments since a
transformer-based SER model requires important resources to
adapt and store its parameters for each target environment. To
address multiple noise types in a single SER model, Leem et
al. [22] proposed environment-agnostic and -specific adapters.
Their work showed that leveraging the prior knowledge of the
testing condition is important for an SER model’s adaptation
to multiple noisy environments.

This paper explores which form of prior knowledge allows
an SER model to effectively adapt to multiple unseen envi-
ronments. Rather than aiming to cover all the environments,
our system trained the model to be conditioned by a text
embedding describing the environment, which project the
unseen condition into the ones that are the closest to the seen
environments. With this strategy, the prior knowledge is used
as a mechanism for zero-shot learning in new environments
with types of noises not considered while training the models.
It also provides the mechanism to indirectly identify similar
environmental conditions during training (e.g., noise in a
bus station and a train station). Exploring this problem, we
investigate using text-based environment descriptions as the
prior knowledge for a noise-robust SER system. Using natural
language prompts during training has shown potential in image
classification [23], sound event classification [24], and several
speech processing downstream tasks, including keyword spot-
ting, and speaker counting [25]. Natural language supervision
is also applicable to SER tasks [26], [27]. All these studies
indicate that exploiting text information is a promising strategy
for SER systems. We propose a text-guided environment-aware
training (TG-EAT) strategy to improve the noise robustness
of an SER model with text descriptions. We focus on the
prediction of arousal (calm to active), valence (negative to
positive), and dominance (weak to strong). TG-EAT uses noisy
speech and its text-based environmental description to adapt
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the SER model. We use a pre-trained text encoder to extract
the representation of text-based environment descriptions. This
representation is combined with a transformer-based SER
model. During adaptation, the SER model learns appropriate
denoising functions with respect to the given environment
description. During inference, we only need to change the
template sentence to guide the SER model with testing en-
vironment information. We expect that the pre-trained text
encoder can capture similar semantic information from envi-
ronmental conditions included in the train set, allowing zero-
shot environment learning for the SER model. This approach
is expected to generalize the SER performance when tested in
environmental conditions that are not included in the training
process.

Our experiment with the MSP-Podcast corpus shows that
using text descriptions of the testing environment can highly
improve the SER performance, especially with large language
model (LLM). In the -5 dB signal-to-noise ratio (SNR) condi-
tion, our method improves the original SER model built with
a self-supervised learning (SSL) representation by 7.6% for
arousal, 8.3% for dominance, and 45.4% for valence. When
we compare the proposed SER model with the DAT baseline,
we observe improvements of 16.6% for arousal, 18.1% for
dominance, and 23.0% for valence (-5 dB SNR level). With
the text encoder from CLAP, pre-trained with paired audio, the
SER model can achieve the best performance in the low SNR
condition. Compared to freezing the text encoder, the fine-
tuning approach improves performance by 76.4% for arousal,
100.0% for dominance, and 27.7% for valence under the -5
dB SNR condition. Our solution is highly applicable to SER
systems deployed in real-world applications. For example,
systems can infer the testing environment from a global
positioning system (GPS) by using geological information
service (GIS) mashups, such as OpenStreetMap [28]. The main
contributions of this study are:

• We explore using text embedding for an SER model
to increase noise robustness in unseen conditions by
explicitly leveraging the environment information. Our
method provides a unique advantage by enabling a sin-
gle model to adapt to multiple noise conditions using
text embeddings rather than requiring multiple context-
specific expert models. This is particularly beneficial
for transformer-based architectures, which demand sig-
nificant computational resources while delivering SOTA
performance for SER. By leveraging text-described tar-
get environment information, we maximize performance
without the overhead of maintaining multiple models.

• We show the benefits of using LLM to improve SER
performance under noisy conditions over using a pre-
trained environment classifier, especially in a low SNR
condition.

• We show that fine-tuning the text encoder of CLAP can
improve SER performance, leading to the possibility of
using a paired audio encoder to deal with unknown testing
environments.

Our paper is organized as follows. Section II describes stud-
ies relevant to SER in noisy conditions and text-guided train-

ing strategies. Section III describes the proposed approach,
emphasizing the motivations and insights behind the TG-
EAT framework. Section IV provides the experimental setting,
including the database, baselines, and implementation details.
Section V presents the results, discussing the clear benefits
of the proposed strategy. Finally, Section VI concludes the
paper, summarizing our study and providing future research
directions inspired by the proposed approach.

II. PREVIOUS WORK

A. Speech Emotion Recognition under Noisy Environments

Increasing the noise robustness of an SER system is an
essential task when deploying it in real-world applications.
Previous studies have mainly focused on improving acoustic
features for the SER model. Triantafyllopoulos et al. [15]
proposed to enhance noisy waveforms before extracting the
SER features. The enhancement models used convolutional
neural network (CNN) with residual blocks. Pandharipande et
al. [29] proposed to discard noisy frames to increase the noise
robustness of an SER model by using a voice activity detection
module. Leem et al. [30] proposed to select noise-robust LLDs
by addressing the performance and robustness of each single
LLD.

More recently, SER studies have mainly focused on us-
ing transformer-based speech representation models [31]–[36],
including Wav2Vec2.0 [1], HuBERT [2], and WavLM [3].
Such models have shown higher robustness against small
perturbations on the input speech than the traditional SER
model with a Mel-spectrogram [33]. Despite this trend, they
still show performance differences from the ones tested in
a clean environment. For this reason, studies are currently
exploring strategies to improve the noise robustness of the
pre-trained speech representation model. A common approach
to address this issue is noise-aware training, where the clean
training set is augmented with the noise sound during environ-
ment adaptation. Mitra et al. [20] demonstrated that training
a HuBERT-based SER model with noisy speech can highly
improve the performance in low SNR conditions. Leem et al.
[21] proposed a contrastive teacher-student learning strategy to
address the catastrophic forgetting issue when training a fine-
tuned SER model with noisy speech. Wu et al. [12] proposed
to dynamically change the distortion level of the augmented
speech during adaptation based on the distortion metrics.

The aforementioned methods focused on increasing the SER
model’s robustness against a single target environment. They
might not be the optimal solution for an SER model deployed
on a real-world application since it is highly likely that this
system will encounter multiple types of environmental noises.
We focus on adapting a single transformer-based SER model
to multiple noisy environments to efficiently deal with multiple
types of environments. To address this issue, Leem et al.
[22] proposed to adapt the transformer-based SER model to
multiple types of noises with skip connection adapters. They
not only trained the SER model with multiple environments
but also focused on leveraging the environmental informa-
tion of the testing conditions to improve SER performance
under noisy conditions. The results showed that using the
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environment-agnostic and -specific adapters with respect to
the testing condition can improve the SER performance under
noisy conditions. Such prior knowledge could be achieved
using domain knowledge or GPS information. Their result
showed that using environmental information during infer-
ence is important for a SER model to perform well under
noisy conditions. This work indicates that leveraging the prior
knowledge of the testing condition is also important for a
noise-robust SER model, as well as training it with multiple
types of noises. This is beneficial for an SER model deployed
on real-world applications where the system can exploit the
domain knowledge of the testing environment and the GPS
information.

This paper also explores the multi-condition training ap-
proach where the fine-tuned SER model is adapted to multiple
types of noise. Different from other methods, our strategy re-
lies on a text embedding that describes the testing environment
to deal with multiple unseen environments.

B. Text-Guided Training

As we discussed in Section II-A, exploiting environmental
information can improve SER performance in a noisy envi-
ronment. This paper mainly focuses on using text prompts to
infuse environmental information into an SER model. Using
natural language prompts does not require the recognition
model to use a fixed set of predetermined labels during
training. Contrastive language-image pre-training (CLIP) is
a good example of this approach [23]. It consists of an image
encoder and a text encoder, trained with pairs of images
and their corresponding text descriptions. These encoders are
trained in a contrastive learning manner, which maximizes
the similarity of both representations if the image and the
description are paired and minimizes the similarity if they
are unpaired. After training, these encoders can perform zero-
shot classification by checking the similarity between the
given image and the candidate prompts. The study of Radford
et al. [23] used the following prompt template: “A photo
of a {label}”. They calculate the similarity between the
representation from the given image and the representations
from the prompts with different {label}, selecting the {label}
that shows the maximum similarity.

The contrastive pre-training strategy with natural language
supervision is also successful in universal audio and speech
processing. Wu et al. [24] demonstrated that pre-training audio
and text encoder with natural language guidance could im-
prove audio classification performance. The study of Elizalde
et al. [25] showed that such natural language guidance can
improve speech processing tasks, including keyword spotting,
speaker counting, and SER tasks.

Previous studies have found that natural language supervi-
sion can apply to SER tasks. Stanley et al. [26] used word
embeddings to encode emotional labels for SER model. Gong
et al. [27] used LLM to infer weak emotion labels for unla-
beled data for weakly-supervised learning of an SER model.
All these findings have shown that exploiting text information
is highly applicable to SER systems. To the best knowledge
of the authors, the use of natural language supervision to
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Fig. 1: Our proposed text-guided environment-aware training
framework. The environment representation is concatenated
with the output of the convolutional feature encoder.

address SER robustness against unknown noisy environments
is a novel research direction.

III. PROPOSED METHOD

This paper proposes text-guided environment-aware training
(TG-EAT), which leverages environmental information to im-
prove an SER model in noisy conditions. Figure 1 illustrates
our proposed TG-EAT framework, which uses a pair of noisy
speech and its corresponding environmental description. The
text embedding extracted from the environmental description
is combined with the acoustic representation in the SER
model, allowing it to improve the representation for the given
environmental description.

The key contribution of this study is how we use the text
description from the target environment. We used prompts to
generate the text description where the target environment is
changed. As a preliminary experiment, we tested different
prompts to describe the target environment such as “The
type of background noise is {environment},” or “The input
is recorded with a sound of {environment}.” We change
{environment} in the prompts according to the target environ-
ment during training and testing. We found that all the prompts
showed similar emotion recognition performance for all the
attributes. Therefore, we consistently use the following prompt
in this study: “This speech is recorded in {environment}.”
We extract the text-based environment embedding from this
text description using a pre-trained text encoder. We test two
different text representations: contrastive learning (CL)-based
representation and LLM-based representation. For the CL-
based representation, we use the text encoder pre-trained with
the contrastive language audio pre-training (CLAP) strategy
[24], [25]. CLAP consists of an audio encoder and a text
encoder. It uses a pair of acoustic events and their text
description during pre-training (e.g., bird chirping sound with
the description, “Bird is chirping in the given audio”). With
these audio-text pairs, the training objective is to maximize
the similarity between the audio and text representation if
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they are from the same pair and minimize it if they are from
a different pair. Since CLAP uses an audio-text pair during
pre-training, we assume that its text encoder can generate
an appropriate representation from the given environment
description coherent with the target acoustic condition. This
paper uses the pre-trained text encoder from the unfused CLAP
model proposed in the study of Wu et al. [24]. We take a 768-
dimensional latent embedding from the text encoder, using
it as our text-based environmental embedding. For the LLM-
based representation, we use the encoder from the pre-trained
RoBERTa model [37]. RoBERTa is pre-trained with masked
language modeling (MLM) and next sentence prediction (NSP)
tasks. RoBERTa has shown good performance in various
benchmarks for evaluating natural language understanding
systems, such as GLUE [38]. Although it is not pre-trained
with audio data, we assume that its encoder can extract
enriched semantic information from the given prompt. We use
RoBERTa-large, which has 24 transformer layers. For each
text encoder, we use the same tokenizer used in its pre-training
to tokenize the text description of the environment. We extract
token-level text embeddings from the tokenized prompt and
then apply average pooling, resulting in a 1024-dimensional
single representation vector for each prompt.

After the environmental representation is obtained, the next
step is to introduce this information into the model. We mainly
focus on a transformer-based SER model, which has shown
good performance in SER tasks [33], [39]. An important task
is to fine-tune the model with clean and emotional speech
data. We first fine-tune the SER model with clean speech
to maximize the concordance correlation coefficient (CCC)
between the predicted and the ground-truth emotional attribute
scores of arousal, dominance, and valence. After fine-tuning
with clean speech, the SER model is continuously updated
with the training set contaminated with multiple types of noise
and their corresponding text description. We insert the text
representation from the given environment description into
the fine-tuned transformer-based SER model. We achieve this
goal by combining the text embedding with the acoustic rep-
resentation, which is the output of the convolutional encoder.
We apply trainable linear projection to the text embedding to
match its dimension to the acoustic representation embeddings.
We concatenate the projected text embedding to the acoustic
representation embeddings along the time axis, then feed them
into the transformer encoder. We choose this approach to
allow the self-attention module in the transformer encoder
to attend to the text embedding to all acoustic representa-
tion embeddings. Previous studies have proposed alternative
approaches to add text embeddings into a prediction model
[40], [41], but we leave this research direction as our future
investigation to further improve its performance. We update
the transformer encoder and the downstream head with the
concatenated embeddings. We use the same training objective
as the one used when training with clean speech. From this
framework, we want to evaluate if the SER model can learn
the denoising function given a noisy acoustic representation
with its text embedding.

TABLE I: Keywords that are used for contaminating training,
development, and testing sets. Freesound illustrates the key-
words that are used for crawling the ambient recordings from
the Freesound repository. DEMAND illustrates the keywords
paired with the recorded sounds in the DEMAND corpus.

Data Split Corpus Keywords
Training,
Development

Freesound mall, restaurant, office, airport, sta-
tion, city, park, street, traffic, home,
kitchen, living room, bathroom, bed-
room, metro, bus, car, construction site,
pedestrian, beach

Testing

Freesound plaza, garden, school, tram, sea, boat,
amusement park, aquarium, arcade,
art gallery, backyard, balcony, bank,
bar, barn, beach, bridge, cafe, camp-
ground, canyon, carnival, cave, ceme-
tery, church, circus, classroom, creek,
crowd, dessert, dock, elevator, exhi-
bition hall, factory, fairground, farm-
yard, festival, field, forest, fountain,
gallery, gas station, grocery store, gym,
harbor, highway, hospital, hotel, ice
rink, industrial site, jungle, lake, laun-
dromat, library, lobby, machine shop,
market, meadow, mountain, museum,
nightclub, parade, parking lot, pa-
tio, pet store, playground, pub, river,
rooftop, shopping center, stadium, sub-
way, swimming pool, theater, valley,
waiting room, warehouse, waterfall,
wetland, workshop, yard

DEMAND washroom, kitchen, living room, sports
field, river, park, office, hallway, meet-
ing, subway station, cafeteria, restau-
rant, traffic intersection, town square,
cafe terrace, subway, bus, car

IV. EXPERIMENTAL SETTINGS

A. Data preparation

Our experiment uses the MSP-Podcast corpus [42], which
consists of natural and diverse emotional speech samples from
various podcast recordings [6]. The audios do not include
background music or overlapped speech, and their predicted
SNR is above 20 dB. We consider this corpus a clean emotion
speech database for these reasons. This study focuses on
predicting the emotional attributes of arousal (calm to active),
dominance (weak to strong), and valence (negative to positive).
Labels for these attributes were annotated by at least five
raters using a seven-point Likert scale. We average the scores
provided by raters for each sample to establish its ground truth
values. This paper uses version 1.10 of the corpus, which
consists of 104,267 annotated utterances. We use the train
set to fine-tune the pre-trained speech representation model,
using it as the original SER model. We use samples from the
development set to select the best model during the fine-tuning
process.

We simulate real-world noisy environments by collecting
noise sounds from the Freesound repository [43], which
contains publicly available ambient noise sounds. We use
diverse queries related to each environment to collect noise
sounds, including indoor, outdoor, and in-vehicle conditions.
Additionally, we included the DEMAND dataset for additional
testing conditions. DEMAND contains 15 different recording
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conditions that simulate indoor, outdoor, and in-vehicle en-
vironments. We directly use the metadata of each recording
sample to define the keyword for the testing conditions. Table
I illustrates the keywords that are used to contaminate train,
development, and test sets. We use 20 noisy environments
for the train and development sets and 89 environments to
contaminate the test set. Although these noise sounds are not
used during adaptation, they have common characteristics with
the noise sounds used during adaptation (e.g., indoor, outdoor,
or in-vehicle conditions). We want to evaluate whether our
proposed method can capture this semantic similarity during
inference. We randomly pick the noise sounds to contaminate
the Test1 set of the clean MSP-Podcast corpus. We repeat this
process 10 times, creating 10 different sets for three different
SNR levels, 5dB, 0dB, and -5dB. We also create a random
set, where the SNR levels are randomly selected from 5dB to
-5dB. This set simulates the testing condition in a real-world
application where the SNR level varies.

B. Fine-Tuning Transformer-Based Architecture

We implement our proposed approach with two differ-
ent pre-trained speech representation models: wav2vec2-
large-robust [44] and the wavlm-base-plus models [3]. The
wav2vec2-large-robust model has shown good performance
in the emotional attribute prediction task [33]. The wavlm-
base-plus model has shown good performance for emotion
recognition in the speech processing universal performance
benchmark (SUPERB) [45]. This model is pre-trained with
noise, creating representations that are expected to be more ro-
bust to noise than other SSL representations. We fine-tune the
transformer encoder of the pre-trained speech representation
model and the downstream head with the clean version of the
MSP-Podcast corpus. For wav2vec2-large-robust, we remove
the top 12 transformer layers from the model to preserve
the recognition performance with fewer parameters [33]. We
import the pre-trained models from the HuggingFace library
[46]. We use two fully connected layers for the downstream
head, where each layer has 512 nodes, layer normalization, and
the rectified linear unit (ReLU) as the activation function. We
use dropout in all the hidden layers to increase regularization,
with a rate set to p = 0.5. We use a linear output layer with
three nodes to predict emotional attribute scores, where each
node predicts the scores for arousal, dominance, and valence.
We apply average pooling on top of the last transformer layer’s
representation to feed it to the downstream head.

During fine-tuning, we apply Z-normalization to the raw
waveform by using the mean and standard deviation esti-
mated over the training set and min-max normalization to
the emotional labels, mapping them to the range of 0 to 1.
We use the same mean and standard deviation estimated over
the training set to normalize the test set’s raw waveform. We
use 32 utterances per mini-batch and update the model for
ten epochs. We use the Adam optimizer [47] with a learning
rate warmup scheduling, which shows good performance when
fine-tuning a pre-trained transformer architecture [48]. For the
first 1,000 mini-batches, we linearly increase the learning rate
from 1e−8 to 1e−5. After the 1,000 mini-batches, we fix the

learning rate to 1e−5. All of our experiments are conducted
on a single NVIDIA GeForce RTX 3090.

C. Text-Guided Environment-Aware Training

After fine-tuning with the clean speech, we adapt the SER
model to the noisy environmental conditions. We randomly
select one of the 20 noise conditions for each mini-batch
during adaptation. We then use 32 different noise samples
in the selected condition to contaminate 32 clean speech
samples from the training set of the MSP-Podcast corpus. We
build text prompts with respect to the picked environment for
each mini-batch, as described in Section III. In real-world
applications, it is difficult to assume the exact SNR level
of the testing condition. Therefore, we introduce an SER
mismatch between our experiment’s adaptation and testing
stages. We randomly select the SNR level for the adaptation
of the models among these options: {2.5, 7.5, 12.5}dB. We
use the same hyperparameters as the ones used for fine-tuning
the SER model with clean speech during adaptation. We tested
two variations of our proposed text-guided environment-aware
training: the CL-based representation TG-EAT-CL, and the
LLM-based representation TG-EAT-LLM.

D. Baselines

Original: This model fine-tunes the model with clean emo-
tional speech, with no adaptation to the noisy conditions.
Retrain the original model with noisy speech (RT): This
baseline updates the transformer encoder and the downstream
head of the Original model with noisy speech. It does not use
environmental information during adaptation and inference.
As described in Section IV-A, it uses 20 environmental
conditions for adaptation. The evaluation uses 89 other
environmental conditions.
Domain adversarial training (DAT): Inspired by Huang et al.
[49], we test a domain adversarial training strategy to adapt
an SER model to multiple noisy conditions. Along with the
downstream head for the SER task, we attach an environment
classifier on top of the average-pooled transformer represen-
tations. The environment classifier has the same architecture
as the downstream head for the SER task. The environment
classifier is trained to minimize the cross-entropy loss between
the predicted and the ground-truth noise types. We applied
a gradient reversal layer (GRL) between the environment
classifier and the transformer encoder to train the transformer
encoder to normalize the environment information in the
resulting representations. Like the RT baseline, this baseline
does not use environmental information during inference.
Enhance the noisy speech (SE): This baseline denoises the
input noisy speech before feeding it into the original SER
model. We use the frequency recurrent convolutional recur-
rent network (FRCRN) framework [50] to enhance the input
speech. The FRCRN model is trained with the 4th DNS
challenge dataset, achieving one of the top performances in
this challenge [51].
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TABLE II: Average CCC for models using wav2vec2-large-
robust feature vectors. We denote with ∗, †, ⋆, and ‡ when a
model shows significantly better performance than the Origi-
nal, RT, DAT, and SE models, respectively. We also mark ♢

and ♣ when a baseline significantly perform better than the
TG-EAT-CL and TG-EAT-LLM, respectively. We highlight in
bold the best performance per condition.

SNR Model Arousal Dominance Valence

C
le

an

Original (∗) 0.63 0.53 0.41
RT (†) 0.63 0.53 0.46∗
DAT (⋆) 0.63 0.51 0.45∗
SE (‡) 0.53 0.48 0.37
TG-EAT-CL (♢) 0.63 0.53 0.45∗
TG-EAT-LLM (♣) 0.63 0.53 0.46∗

5d
B

Original (∗) 0.60‡ 0.51‡ 0.40‡

RT (†) 0.63∗‡ 0.52‡ 0.44∗‡

DAT (⋆) 0.62‡ 0.50‡ 0.44∗‡
SE (‡) 0.50 0.44 0.35
TG-EAT-CL (♢) 0.62‡ 0.51‡ 0.45∗‡

TG-EAT-LLM (♣) 0.62‡ 0.52‡ 0.46∗‡

0d
B

Original (∗) 0.54‡ 0.46‡♢ 0.31
RT (†) 0.55‡♢ 0.46‡♢ 0.38∗‡

DAT (⋆) 0.54‡♢ 0.44‡ 0.39∗‡
SE (‡) 0.47 0.41 0.35∗

TG-EAT-CL (♢) 0.52‡ 0.42 0.38∗‡

TG-EAT-LLM (♣) 0.56∗⋆‡♢ 0.47⋆‡♢ 0.39∗‡

-5
dB

Original (∗) 0.26♢ 0.24‡♢ 0.11
RT (†) 0.22 0.21 0.15∗⋆

DAT (⋆) 0.24♢ 0.22‡ 0.13
SE (‡) 0.23 0.19 0.19∗†⋆♢♣

TG-EAT-CL (♢) 0.21 0.20 0.15∗⋆

TG-EAT-LLM (♣) 0.28∗†⋆♢ 0.26∗†⋆‡♢ 0.16∗⋆

R
an

do
m

Original (∗) 0.47‡♢ 0.41‡♢ 0.29
RT (†) 0.47‡♢ 0.39‡♢ 0.35∗‡

DAT (⋆) 0.47‡♢ 0.39‡ 0.34∗‡
SE (‡) 0.37 0.32 0.30
TG-EAT-CL (♢) 0.44‡ 0.37‡ 0.34∗‡

TG-EAT-LLM (♣) 0.50∗†⋆‡♢ 0.42†⋆‡♢ 0.36∗⋆‡

V. RESULTS

A. Emotion recognition performance

We report the SER performance of our text-guided
environment-aware training with our baselines. As described
in Section IV-A, we use ten different evaluation sets for three
SNR levels. We report the average CCC of ten experiments
for each SNR level. We conduct a one-tailed Welch’s t-test
between the baselines and our proposed models to assess if the
training strategy shows significantly better SER performance
in noisy conditions. We assert significance at p-value < 0.05.

Tables II and III illustrate the SER performance of each
model in noisy testing environments. When comparing our
baselines (RT, DAT, SE) with the original model, they do
not consistently yield performance improvement for all the at-
tributes. RT does not improve performance for either arousal or
dominance with the wav2vec2-large-robust feature vector, or
for valence with the wavlm-base-plus feature vector. Although
the DAT and SE show significant performance improvements
with the wavlm-base-plus feature vector, both baselines fail to
improve arousal and dominance prediction performance with
the wav2vec2-large-robust feature vector. Since these baselines
do not use environmental information, we can observe the

TABLE III: Average CCC for models using wavlm-base-plus
feature vectors. We use the same notations as in Table II. We
highlight in bold the best performance per condition.

SNR Model Arousal Dominance Valence

C
le

an

Original (∗) 0.60 0.49 0.46
RT (†) 0.59 0.49 0.43
DAT (⋆) 0.58 0.48 0.48
SE (‡) 0.58 0.46 0.43
TG-EAT-CL (♢) 0.57 0.47 0.47
TG-EAT-LLM (♣) 0.59 0.48 0.46

5d
B

Original (∗) 0.54 0.45 0.44
RT (†) 0.58∗‡ 0.48∗‡ 0.41
DAT (⋆) 0.58∗‡ 0.48∗‡ 0.47∗†‡
SE (‡) 0.55 0.45 0.40
TG-EAT-CL (♢) 0.57∗‡ 0.47∗‡ 0.46∗†‡

TG-EAT-LLM (♣) 0.58∗‡ 0.47∗‡ 0.44†‡

0d
B

Original (∗) 0.40 0.31 0.33
RT (†) 0.53∗ 0.43∗ 0.33
DAT (⋆) 0.53∗ 0.45∗†♢ 0.41∗†
SE (‡) 0.53∗ 0.44∗ 0.41∗†
TG-EAT-CL (♢) 0.51∗ 0.42∗ 0.40∗†

TG-EAT-LLM (♣) 0.55∗†⋆‡♢ 0.45∗†♢ 0.38∗†

-5
dB

Original (∗) 0.11 0.07 0.10
RT (†) 0.18∗ 0.11∗ 0.12
DAT (⋆) 0.22∗†♢ 0.16∗†♢ 0.17∗†

SE (‡) 0.28∗†⋆♢ 0.22∗†⋆♢ 0.23∗†⋆♢♣

TG-EAT-CL (♢) 0.17∗ 0.11∗ 0.18∗†

TG-EAT-LLM (♣) 0.29∗†⋆♢ 0.20∗†⋆♢ 0.20∗†⋆
R

an
do

m

Original (∗) 0.34 0.25 0.31
RT (†) 0.45∗ 0.33∗ 0.30
DAT (⋆) 0.46∗†‡♢ 0.37∗†♢ 0.38∗†‡
SE (‡) 0.44∗ 0.35∗ 0.35∗

TG-EAT-CL (♢) 0.43∗ 0.33∗ 0.37∗†

TG-EAT-LLM (♣) 0.50∗†⋆‡♢ 0.39∗†⋆‡♢ 0.36∗†

importance of incorporating it when adapting the SER model
to multiple noisy environments.

Compared with the baselines, our proposed TG-EAT-LLM
performs the best when using the wav2vec2-large-robust fea-
ture vector. In the random condition, TG-EAT-LLM improves
the original model’s performance by 6.3% (arousal), 2.4%
(dominance), and 24.1% (valence). It yields the best perfor-
mance with the wavlm-base-plus feature vector for arousal
and dominance prediction tasks. In the random condition,
TG-EAT-LLM shows performance gains of 8.6% (arousal)
and 5.4% (dominance) compared to the best baseline, DAT.
Unlike with the wav2vec2-large-robust representation, DAT
significantly improves the original model’s performance for
all the attributes with the wavlm-base-plus representation. The
wavlm-base-plus is pre-trained with noisy data, while the
wav2vec2-large-robust is trained with a diverse speech corpus
under clean conditions. This difference makes the wavlm-
base-plus inherently more robust to noise, which leads to
the successful improvement with the baselines that do not
use environmental information. We note that TG-EAT-LLM
consistently outperforms the original model across all SSL
representations. These results indicate that guiding the SER
model with LLM-based representation can improve the noise-
robustness for the SER task. It shows good generalization to
unknown environments.

For the valence prediction, the SE baseline shows the best
performance under the -5dB condition. Previous studies have
shown that valence performance correlates with the linguistic
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information [33]. This phenomenon could explain how the
SE baseline can improve valence performance by explicitly
enhancing speech intelligibility. However, it does not always
yield the best performance for arousal and dominance. Both
arousal and dominance are related to acoustic characteristics
rather than linguistic information. Thus, this observation im-
plies that the enhancement module can manipulate the acoustic
characteristics of the original speech. We can also see that the
SE baseline does not yield the best performance for valence
under 5dB conditions, where the impact of acoustic distortion
could be higher than the impact of intelligibility improvement.

When we compare the TG-EAT-CL and TG-EAT-LLM
models, we conclude that the CL-based representation does
not show a performance improvement over the original SER
model, especially with the wav2vec2-large-robust feature vec-
tor. We can clearly see that the TG-EAT-CL model does not
improve the performance for arousal and dominance in the
0dB and -5dB conditions. This result indicates that pre-training
the text encoder to have enriched semantic information is more
helpful for the noise-robust SER model than pre-training the
text encoder with an audio-text pair.

An interesting and counter-intuitive finding here is that
the models trained with noisy speech (e.g., RT, DAT, TG-
EAT-CL, TG-EAT-LLM) outperform the Original model under
clean conditions when experimenting with the wav2vec2-
large-robust architecture. We assume this improvement is
caused by exposing the noisy speech to the wav2vec2-large-
robust representation, which is not trained with noisy speech
in its pre-training stage. Previous studies have shown that
augmenting the training set with multiple conditions not only
improves automatic speech recognition (ASR) performance
under noisy conditions but also improves under a clean con-
dition [52], [53]. As discussed in the previous section, we
hypothesize that improvements in speech intelligibility leads
to improvement of valence prediction. Based on these obser-
vations, we conclude that this phenomenon, while unintuitive,
demonstrates the benefits of data augmentation under clean
conditions.

B. Embedding analysis

Section V-A demonstrated that the TG-EAT-LLM approach
shows better performance than the environment-agnostic base-
lines and the TG-EAT-CL approach. Our initial assumption
is that the proposed TG-EAT-LLM can learn appropriate
denoising functions for the transformer encoder. To verify this
assumption, we analyze the difference between the clean and
noisy representations (Fig. 2(a)). We use the wavlm-base-plus
feature vector and the noisy speech from the -5dB condition
for this analysis. The first analysis compares the clean and
noisy representation extracted from each model. We want to
assess with this analysis if the model is robust by comparing
the representation obtained with clean and noisy speech. The
second analysis compares the clean representation from the
Original framework and the noisy representation from each of
the models (Fig. 2(b)). In this analysis, we want to assess
if the model can keep the knowledge of the original SER
model. We extract the representations from the first and the

1st layer last layer0.000

0.005

0.010

0.015

Original RT DAT TG-EAT-CL TG-EAT-LLM

1st layer last layer0.00

0.01

0.02

0.03

M
SE

(a)

1st layer last layer0.00

0.01

0.02

0.03

(b)

Fig. 2: Embedding differences in the first and the last trans-
former encoder layers using clean and noisy speech in the -5dB
condition. We use the wavlm-base-plus feature vector in this
analysis. (a) illustrates the mean square error (MSE) between
the clean and noisy representations, where both representations
are extracted from each of the final models. (b) illustrates
the MSE between the clean representation extracted from the
Original model and the noisy representation extracted from
each final model.

last transformer encoder layers and then calculate the mean
square difference between clean and noisy representations for
each layer.

Figure 2 illustrates our analysis results. When extracting
clean and noisy representations from the same model, we
can first see that DAT shows the lowest difference in the
last transformer layer. On the contrary, it shows the highest
difference when extracting the clean representation from the
original model. This result demonstrates the risk of catas-
trophic forgetting when using the DAT method. Although it
can normalize the environmental difference in the adapted
model, its representation can deviate from the original SER
model’s representation. However, our TG-EAT method does
not highly increase the difference compared to the original
model’s clean representation. This result indicates that TG-
EAT can minimize the risk of catastrophic forgetting during
adaptation by introducing environmental information about the
speech.

Compared with the TG-EAT-LLM method, TG-EAT-CL
shows a higher representation difference in the first layer.
When comparing the clean and noisy representations from the
same model, TG-EAT-LLM shows 7.7% less representation
difference than the TG-EAT-CL method in the first transformer
layer. However, TG-EAT-CL shows less representation differ-
ence than the TG-EAT-LLM in the last layer. Even though
the downstream head uses the representation from the last
transformer layer, TG-EAT-CL shows worse performance than
the TG-EAT-LLM approach. LLM-based representation can
better denoise the acoustic representation than the CL-based
representation. In addition, we speculate that the embedding
difference in the lower transformer layer might be the crucial
factor for increasing the robustness to noise of the SER system.

We also investigate if the proposed text-based environment
embedding clusters similar environments together, which is
the key premise of the proposed approach to deal with unseen
environments. First, we randomly select 21 different keywords,
each representing an indoor, outdoor, and in-vehicle environ-
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Fig. 3: Visualization of text-based environment embeddings.
We use UMAP to project text embeddings into 2D space.

ment. Each environment includes seven keywords extracted
from the train and test sets, aiming to illustrate the model’s
capability to cluster similar environments in both seen and
unseen environments. We extract the text embedding from
these 21 keywords by using the same template that we used
for our TG-EAT frameworks (i.e., “This speech is recorded in
{environment}.”) We project these embeddings into the 2D
space to visualize the embedding space using the uniform
manifold approximation and projection (UMAP) method [54].
Figure 3 illustrates the text embedding space of TG-EAT-CL
and TG-EAT-LLM. The figure shows that both frameworks
cluster semantically similar environmental conditions together.
For example, we observe the embeddings for “boat” and
“sea,” together. We also observe the ones for “subway” and
“station” clustered together. Both encoders cluster the house
environments (“house”, “home”, “kitchen”) and the vehicle
environments (“bus”, “taxi”, “car”), which indicates that the
text encoder can cluster acoustically similar environments.
This analysis implies that our proposed frameworks can handle
unseen environments by clustering acoustically and semanti-

TABLE IV: Silhouette score of text embedding space of TG-
EAT-CL and TG-EAT-LLM. We apply K-means clustering on
the projected environmental embedding with K clusters (K =
3, 5, 7).

K = 3 K = 5 K = 7
TG-EAT-CL 0.11 0.10 0.10
TG-EAT-LLM 0.57 0.43 0.40

TABLE V: Average CCC of the ten experiments for the seen
environment. The environmental conditions for the train set
and the test set are the same. We compare the proposed method
with the baselines by using the wavlm-base-plus model.

SNR Model Arousal Dominance Valence

5d
B

Original 0.54 0.46 0.45
One-hot 0.59 0.48 0.47
TG-EAT-LLM 0.59 0.48 0.47

0d
B

Original 0.40 0.32 0.35
One-hot 0.56 0.45 0.42
TG-EAT-LLM 0.56 0.46 0.40

-5
dB

Original 0.09 0.06 0.10
One-hot 0.29 0.20 0.21
TG-EAT-LLM 0.27 0.18 0.21

cally similar environments.
To provide a quantitative analysis of the environmental

embeddings and their impact on the model’s representations,
we evaluated the clustering quality of the environmental text
embeddings. We extracted embeddings for all environments
listed in Table I from both the TG-EAT-CL and TG-EAT-
LLM text encoders. We calculated the silhouette score for
each set of embeddings using the K-means clustering [55].
Table IV illustrates the silhouette score of each embedding
projection with a different number of clusters. With three
clusters, the TG-EAT-LLM embeddings achieved a score of
0.57, substantially higher than the 0.10 score from the TG-
EAT-CL embeddings. This result indicates that the LLM-based
encoder generates more separable and well-defined clusters
for different environments. This higher-quality embedding
structure correlates with the superior performance of the TG-
EAT-LLM model in noisy conditions, suggesting that more
discriminable environmental representations are key to achiev-
ing robust performance.

C. Evaluation of Different Types of Environmental Embedding

Our proposed method uses the embedding extracted from
the text encoder to represent the testing environmental con-
dition. To verify the benefits of using a text-based environ-
mental embedding, we compare it with three different types
of environmental embedding: one-hot encoding (One-hot),
global vectors for word representation (GloVe) [56], and audio
spectrogram transformer representation (AST) [57]. One-hot
uses 20-dimensional binary vectors, where 1 represents the
target environment condition, and 0 represents the others.
Each dimension corresponds to the environmental condition
of the training set. This embedding fully represents a seen
environment with a simple vector; however, it cannot represent
unseen environments, which is inappropriate for real-world
services. GloVe is a word-level vector representation extracted
from the regression model that considers the co-occurrences
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TABLE VI: Average CCC of the ten experiments for the
unseen environment. We compare the proposed method with
the baselines by using the wavlm-base-plus model. We denote
with ∗ when a model shows significantly better performance
than the Original model.

SNR Model Arousal Dominance Valence

5d
B

Original 0.54 0.45 0.44
RT 0.58∗ 0.48∗ 0.41
GloVe 0.58∗ 0.47∗ 0.42
AST 0.59∗ 0.49∗ 0.41
TG-EAT-LLM 0.58∗ 0.48∗ 0.44

0d
B

Original 0.40 0.31 0.33
RT 0.53∗ 0.43∗ 0.33
GloVe 0.53∗ 0.42∗ 0.37∗
AST 0.55∗ 0.44∗ 0.34
TG-EAT-LLM 0.55∗ 0.45∗ 0.38∗

-5
dB

Original 0.11 0.07 0.10
RT 0.18∗ 0.11∗ 0.12
GloVe 0.24∗ 0.16∗ 0.18∗
AST 0.28∗ 0.20∗ 0.14∗
TG-EAT-LLM 0.29∗ 0.20∗ 0.20∗

of words. We import the pre-trained GloVe vector collections,
which consist of a 2.2 million-word vocabulary. We select
the word vector representation that corresponds to the target
noisy environment. The resulting representation is a 300-
dimensional vector. This representation can handle unseen
environments through text description, but it is semantically
limited compared to our proposed text encoders. AST uses a
transformer architecture to map the spectrogram patches into
an audio-level representation. The model is fine-tuned with
sound event classification tasks using AudioSet, which serves
as the noise sound corpus for our training set. We directly
import the pre-trained checkpoint from HuggingFace and ex-
tract the patch-wise embedding sequence from the given input.
We apply average pooling to the extracted sequence to yield a
single environment embedding, which is then fused with the
pre-trained SER model. We do not fine-tune the pre-trained
checkpoint jointly with the SER model, following the same
strategy we use to train the TG-EAT-LLM framework. This
model can automatically capture the acoustic characteristics
from the audio-only input. However, it cannot explicitly use
the semantic information of the testing environment.

We compare our proposed method with the one-hot vector
in the seen environment scenario (Table V) and with the other
baselines in the unseen environment scenario (Table VI). For
the seen environment scenario, we used the same environmen-
tal conditions as the train set to contaminate the clean test set,
but with different audio samples. We use ten different test
sets and report the average CCC for both cases. Tables V and
VI report the results for the seen and unseen environments,
respectively. In the seen environment, our proposed method
and the one-hot environment encoding model improve the
original SER performance for all the conditions and attributes.
Both models show similar performances in the seen environ-
ments. However, the one-hot encoding cannot cover unseen
environments. This result demonstrates that the proposed text
embedding can deal with both seen and unseen environments.
Compared to the model that uses GloVe embeddings, our
proposed method shows better SER performances in the 0dB

and -5dB conditions. It also shows a better performance for
valence in the 5dB condition. The GloVe model only considers
word co-occurrence to get a word embedding, while our
proposed text encoder model is pre-trained to understand the
semantic information of a sentence. This result implies the
importance of pre-training the text encoder with language
modeling to get a robust environment embedding for perfor-
mance improvement. The AST strategy significantly improves
the performance for arousal and dominance. However, it fails
to improve the performance for valence when the SNR level
is high (e.g., 5dB and 0dB conditions). AST does not use
semantic information from the testing environment to get en-
vironmental embedding; instead, it extracts the environmental
information from the given audio. We hypothesize that AST
confuses the environmental condition when the background
noise amplitude is comparably lower than the speech sound.
Unlike this approach, our proposed model relies on the text
description, which is independent of the SNR level. Therefore,
it performs better than AST for valence. In the 0 dB and -5 dB
conditions, our method significantly improves the original
models’ performances for all the attributes. Considering that
those low SNR levels are not presented while training the
model, the result demonstrates that our proposed method is
robust against unseen SNR levels, which is practical for real-
world scenarios.

D. Benefit of Fine-Tuning the Text Encoder

Our results demonstrate that using the text encoder pre-
trained with the CLAP strategy shows worse SER performance
than using the pre-trained LLM. Despite this observation,
we assume that this type of text encoder should have the
potential to improve since the text encoder is pre-trained with
the audio modality. Our assumption is that jointly fine-tuning
the text encoder with the SER model could further improve
the performance. Therefore, we compare the performance of
an SER model by either freezing the text encoder or updating
the encoder while adapting the SER model with the text-based
environment embedding. We refer to the models that fine-
tune the text encoder of the TG-EAT-CL and TG-EAT-LLM
approaches during adaptation as TG-EAT-CL-FT and TG-EAT-
LLM-FT, respectively.

Table VII reports the average CCC of ten different test sets
for each model. When comparing the TG-EAT-LLM and TG-
EAT-LLM-FT implementations, they do not show significantly
different performance. However, the TG-EAT-CL-FT approach
shows meaningful performance improvement over the TG-
EAT-CL implementation. For the -5dB conditions, it even
reaches the best performance among all the models. When
compared with TG-EAT-CL, fine-tuning the text encoder
improves the recognition performance by 76.4% (arousal),
100.0% (dominance), and 27.7% (valence). To analyze how
fine-tuning benefits the model, we visualize in Figure 4 the
text embedding projection from the text encoder used for the
TG-EAT-CL and TG-EAT-CL-FT models. We use the same
experiment setting as we used for illustrating Figure 3. We
can see that some of the embeddings that were not clustered
well in TG-EAT-CL are corrected in TG-EAT-CL-FT. For
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Fig. 4: Comparison of the text embedding projection obtained
before fine-tuning (TG-EAT-CL) and after fine-tuning (TG-
EAT-CL-FT). Similar to the plots in Figure 3, we use UMAP
to project text embeddings into a 2D space.

example, “cafe” is distant from other indoor environments
in TG-EAT-CL. However, when fine-tuning the text encoder,
its embedding gets closer to those environments. We also
observe that such cluster alignments could lead to performance
improvement. Figure 5 illustrates the relative performance
improvement of TG-EAT-CL-FT for each environmental con-
dition. We can see that the TG-EAT-CL-FT model improves
performance in the “cafe” environments. We can also see
that the fine-tuning strategy can improve the performance
for all the attributes, except for five environments in valence
(“creek”, “playground”, “stadium”, “arcade”, and “fountain”).
This observation illustrates the importance of compensating for
the gap in the embedding space between the pre-trained text
encoder space and the acoustic embedding. Although jointly
fine-tuning the text encoder and the SER model can cost more
memory space and computation time for the adaptation, this
strategy can fully utilize the potential of the text encoder pre-
trained with the audio modality.

TABLE VII: Comparison of freezing the text encoder and
updating it while adapting the SER model for the TG-EAT-CL
and the TG-EAT-LLM models. We report the average CCC
of the ten experiments for all the methods. We implement
all the approaches with wavlm-base-plus feature vectors. We
highlight in bold the best performance per condition.

SNR Model Arousal Dominance Valence

5d
B

TG-EAT-CL 0.57 0.47 0.46
TG-EAT-CL-FT 0.58 0.48 0.48
TG-EAT-LLM 0.58 0.47 0.44
TG-EAT-LLM-FT 0.57 0.46 0.46

0d
B

TG-EAT-CL 0.51 0.42 0.40
TG-EAT-CL-FT 0.55 0.45 0.44
TG-EAT-LLM 0.55 0.45 0.38
TG-EAT-LLM-FT 0.54 0.44 0.41

-5
dB

TG-EAT-CL 0.17 0.11 0.18
TG-EAT-CL-FT 0.30 0.22 0.23
TG-EAT-LLM 0.29 0.20 0.20
TG-EAT-LLM-FT 0.27 0.19 0.21

TABLE VIII: Average CCC of the six sessions with the clean
and noisy version of the MSP-IMPROV corpus. We compared
the proposed method with the baselines by using the wavlm-
base-plus model.

SNR Model Arousal Dominance Valence
C

le
an

Original 0.38 0.44 0.41
RT 0.39 0.44 0.40
TG-EAT-CL 0.38 0.45 0.44
TG-EAT-LLM 0.40 0.45 0.42

R
an

do
m Original 0.32 0.36 0.25

RT 0.40 0.42 0.30
TG-EAT-CL 0.36 0.42 0.34
TG-EAT-LLM 0.40 0.42 0.32

E. Cross-corpus Generalization

To evaluate the generalization ability of our proposed TG-
EAT models under unseen, out-of-domain dataset, we conduct
a cross-corpus analysis. We test our baselines and the proposed
TG-EAT models on the MSP-IMPROV dataset [58], where
their data acquisition process is different from our training
set, the MSP-Podcast Corpus. For this evaluation, we evaluate
the performance for each of the six sessions in the MSP-
IMPROV corpus. We create a noisy version of this test set by
contaminating the clean audio with noise from the DEMAND
database at a randomly selected SNR level between -5dB and
5dB.

Table VIII illustrates our experiment results. Under the clean
condition, we can see that our proposed TG-EAT models do
not degrade the performance of baselines. Indeed, they outper-
form the RT baseline for valence. As we discussed in Section
V-A, training with multiple conditions could help performance
improvement for valence even under the clean condition. We
can see that guiding the model with environmental conditions
can keep this benefit under a cross-corpus scenario, while
preserving the Original SER model’s generalization ability.

As expected, under noisy conditions, all models retrained
with noisy speech (RT, TG-EAT-CL, and TG-EAT-LLM)
significantly outperform the Original model, confirming that
noise-aware training is crucial for robust performance on out-
of-set corpora. Our models show a clear improvement in va-
lence. As discussed in Section V-A, arousal and dominance are
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Fig. 5: Relative improvement of fine-tuning the text encoder (TG-EAT-CL-FT) in the TG-EAT-CL framework under the -5dB
condition. We illustrate 16 environments, including the eight highest and the eight lowest improvements for each attribute.

more closely related to acoustic characteristics, while valence
is correlated with linguistic content. By providing explicit
environmental information, our TG-EAT framework may allow
the SER model to better normalize for acoustic variability,
thereby improving the extraction of linguistic content critical
for valence prediction.

Interestingly, the TG-EAT-CL model yields the best valence
performance under noisy, out-of-set conditions, despite not
being the top performer in the in-set evaluation. This result
indicates that its learned representation possesses a strong
capability for generalization, particularly under challenging
mismatched conditions. While our framework shows clear
benefits, we note that the significant improvements observed
for arousal and dominance in the in-set condition did not
fully transfer to this cross-corpus task. This suggests that
future work could explore methods to further enhance the
generalization of acoustically-related emotion attributes in out-
of-domain scenarios.

F. Impact of Mislabeled Audio Tags

In a real-world scenario, location tags could be mislabeled
due to an inaccurate GPS signal or ambiguous locations. To
evaluate the impact of mislabeling audio tags, we present
an ablation study to report the performance of the proposed
TG-EAT-LLM framework, manipulating the environmental
description. To simulate mislabeling, we intentionally ma-
nipulated the environmental tags associated with the input
noisy speech at varying levels of distortion. Specifically, the
environmental tags were randomly replaced with ratios of
25%, 50%, and 75%. The original model trained without any
mislabeled tags (0% manipulation) was used as the baseline
for comparison.

To ensure a robust evaluation, we tested the model on
10 different testing sets, each contaminated with noise at
a randomly selected SNR between 5dB, 0dB, and -5 dB.
The environmental conditions in the testing data were also
chosen randomly to simulate diverse real-world scenarios.
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Fig. 6: CCC of the TG-EAT-LLM model trained with noisy
speech paired with mislabeled environment conditions.

TABLE IX: Silhouette score of the last hidden layer’s embed-
ding space of the RT and TG-EAT-LLM models.

RT TG-EAT-LLM
Using the correct environmental tag 0.363 0.133
Using a semantically similar but incorrect tag 0.363 0.133
Using a semantically different tag 0.360 0.140
Using without an environmental tag 0.361 0.138

The average CCC across these 10 sets was computed for
each manipulation ratio. Figure 6 illustrates the result of
the ablation study. The performance of the TG-EAT-LLM
model gradually decreases as the levels of mislabeled audio
tags increase. The trend indicates that as the model is ex-
posed to higher degrees of mislabeling, it struggles to cluster
recordings accurately from similar environmental conditions.
This performance degradation highlights the sensitivity of
the TG-EAT-LLM framework to the quality of audio tags
and the need for accurate labeling during training. We can
see that environmental conditions play a significant role in
our proposed framework. The model relies heavily on this
information to achieve robust SER performance, highlighting
the importance of minimizing labeling errors when describing
environmental conditions.
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We investigate the degree of impact on our proposed model
of using an audio tag that is mislabeled but either semantically
similar or completely dissimilar to the correct environmental
information. We measured the separability between the final
layer embeddings of speech under clean versus noisy con-
ditions. A robust model should normalize the environmental
difference, which should lead to a low clustering quality
when the embedding space is clustered by environmental
differences. We compared our TG-EAT-LLM model against
the RT baseline under four prompt conditions: (1) the correct
environmental tag, (2) a semantically similar but incorrect tag,
(3) a semantically different tag, and (4) no tag at all. We select
five similar conditions (“kitchen”, “house”, “living room”,
“school”, “office”), contaminating the test set with these noise
types. SNR levels are randomly chosen from -5dB to 5dB.
Condition (1) uses the same tag as the noise label in the input
audio. Condition (2) randomly selects the tags from the four
other similar conditions. Condition (3) randomly selects tags
from five different tags that are semantically different from
this group (“playground”, “subway station”, “town square”,
“construction site”, “sports field”). Condition (4) does not use
any environmental tags (i.e., the model only accepts the input
audio).

Table IX shows the result of our experiment. The TG-
EAT-LLM model consistently achieves much lower silhouette
scores than the RT baseline. When using a correct tag, the
RT baseline yields a 0.363 score, while our TG-EAT-LLM’s
score achieves a 0.133 score. This result illustrates that our
framework effectively normalizes environmental differences
from the speech representation. When compared to using the
correct tag, using a semantically similar tag does not change
the clustering score in TG-EAT-LLM. The score slightly in-
creases when a semantically different tag or no tag is provided.
The RT baseline’s score remains unchanged regardless of
the text input. These observations imply that guiding the
model with environmental information during training can
introduce sensitivity to semantically incorrect environmental
information. The model does not ignore the prompt but instead
uses it as intended to disentangle environmental noise from
emotional content.

G. Limitations
Our proposed TG-EAT framework heavily relies on the

assumption that the recorded speech is paired with accurate
GPS location data, which is crucial for acquiring accurate
environmental tags. However, the recorded speech could be
associated with inaccurate or missing GPS points in real-world
scenarios, leading to irrelevant or unavailable environmental
tags. As discussed in Section V-F, having irrelevant tags could
degrade our system’s performance, and missing tags would
not provide the information for our model to work properly.
Additionally, GIS mashups may fail to retrieve meaningful
tags in areas with sparse or incomplete annotations, further
limiting the system’s ability to leverage the information of the
recording conditions. Furthermore, even with accurate data,
a single static tag may be an oversimplification for complex
acoustic scenes with overlapping speech or rapidly chang-
ing soundscapes, potentially degrading performance. Those

limitations demonstrate the need for future work to address
potential inaccuracies in GPS data and missing GPS modality.
In addition to the availability of accurate GPS information, our
architectural approach to fuse the text embedding to the SER
model was limited to concatenating a text embedding to audio
tokens. The exploration of more dynamic fusion strategies
[40], [41] remains a key area for future work to potentially
build upon our findings and further enhance performance.

VI. CONCLUSIONS

We proposed the TG-EAT method, which uses a text
description of the testing environment for noise-robust SER.
This approach inserts a text-based environment representation
into an SER model, leading it to improve the prediction with
respect to the given environmental information. Our exper-
iment demonstrated that the LLM-based representation can
improve SER performance under noisy conditions, especially
when dealing with low SNR conditions. Our analysis indicates
that the pre-trained text encoder can cluster acoustically and
semantically similar environments into the same embedding,
which is crucial for generalizing the models for unseen en-
vironments. Our result also shows that the CLAP-based text
encoder can be highly improved by updating the text encoder.
This result demonstrates the importance of minimizing the em-
bedding space gap between the text encoder and the acoustic
embedding.

We plan to expand this approach to cases where we cannot
obtain information on the testing environment. While AST
embeddings demonstrate competitive performance for arousal
and dominance, they do not show improvements for valence
compared to models that explicitly use text embeddings. The
CL-based representation can address scenarios where noise
information is not provided by introducing its audio encoder.
CLAP trains the audio encoder to have a similar representation
to the ones from the text encoder, which could be useful for
extracting environmental information from the audio. For this
reason, we plan to investigate how we can improve the noise-
robustness of the SER model with a CLAP encoder. We also
plan to investigate the alternative approach of leveraging the
inferred caption from an automated audio captioning (AAC)
model [59], using it as an environmental descriptor.
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