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Abstract
Building speech emotion recognition (SER) models for

low-resource languages is challenging due to the scarcity of la-
beled speech data. This limitation mandates the development of
cross-lingual unsupervised domain adaptation techniques to ef-
fectively utilize labeled data from resource-rich languages. In-
spired by the TransVQA framework, we propose a method that
leverages a shared quantized feature space to enable knowledge
transfer between labeled and unlabeled data across languages.
The approach utilizes a quantized codebook to capture shared
features, while reducing the domain gap, and aligning class dis-
tributions, thereby improving classification accuracy. Addition-
ally, an information loss (InfoLoss) mechanism mitigates criti-
cal information loss during quantization. InfoLoss achieves this
goal by minimizing the loss within the simplex of posterior class
label distributions. The proposed method demonstrates superior
performance compared to state-of-the-art baseline approaches.
Index Terms: Speech Emotion Recognition, Cross-lingual Un-
supervised Domain Adaptation, Discrete Features, InfoLoss

1. Introduction
Emotions are fundamental to human communication [1], con-
veyed primarily through speech [2,3] and facial expressions [4].
However, human-computer interaction (HCI) [5] often lacks
emotional awareness, limiting its effectiveness in applications
such as personalized learning, virtual assistance, and therapy.
Speech emotion recognition (SER) offers a promising solution
to enhance HCI, but linguistic barriers hinder its applicability
in multilingual settings [6–8]. The scarcity of labeled data for
most languages, due to the high cost of emotional annotation,
further complicates SER development, with only a few lan-
guages having sufficient resources [9–12]. We need strategies
to transfer knowledge to deal with low-resource languages.

Monolingual SER models struggle with linguistically dis-
tinct languages due to differences in phonetic, syntactic,
prosodic, lexical, and semantic structures [13]. Given the per-
formance gap between closely and distantly related languages,
relying on separate models becomes impractical. To address
this problem, we aim to develop a unified multilingual SER
system capable of handling multiple languages within a single
framework. One approach is to combine datasets from vari-
ous languages for supervised training, enabling the model to
learn linguistic nuances [14–16]. However, due to the scarcity
of labeled data, we prioritize unsupervised domain adaptation
to learn linguistic variations and transfer emotional knowledge
to low-resource languages.

Inspired by the TransVQA approach used for image clas-
sification [17], this study proposes a shared codebook-based
unsupervised domain adaptation technique that learns a quan-

tized shared space from the feature space of both labeled and
unlabeled data, as well as from the posterior class-label dis-
tribution. The latent codebook effectively captures language-
specific variations by encoding both the Euclidean feature space
and the posterior label simplex into an aligned discrete rep-
resentation, facilitating cross-lingual knowledge transfer. The
proposed method of quantized codebook for domain adaptation
operates with three distinct objectives. The first objective fo-
cuses on aligning unlabeled data with labeled data at the global
domain level by minimizing the cross-domain discrepancy. The
second objective focuses on class-wise alignment across both
domains, where labeled data annotations and pseudo-labels for
unlabeled data are utilized to reduce intra-class disparity while
maintaining a higher inter-class separation. This structured
alignment enhances classification performance in the unlabeled
domain. While the first two objectives focus on feature align-
ment in the Euclidean space, the third objective operates in the
posterior class-label space. It aims to mitigate information loss
introduced by the quantization process by minimizing the dis-
crepancy between the true and predicted label distributions [18].

To evaluate the effectiveness of our unsupervised domain
adaptation strategy, we conduct experiments on two linguisti-
cally distinct datasets: the MSP-Podcast corpus [11] for En-
glish as the labeled dataset and the BIIC-Podcast corpus [10] for
Taiwanese-Mandarin as the unlabeled dataset. These languages
exhibit significant differences in phonetics, syntax, and tonal
characteristics, further impacting SER performance. Experi-
mental results demonstrate that the proposed method improves
SER performance on unlabeled datasets by 14.8% compared to
cross-corpus SER without adaptation. It outperforms state-of-
the-art unsupervised domain adaptation methods, including lad-
der network and domain adversarial network, highlighting its
effectiveness in bridging linguistic and domain discrepancies.
Notably, the addition of InfoLoss contributes to a 3% perfor-
mance gain by mitigating information loss during quantization.
These findings underscore the potential of our approach for en-
hancing multilingual SER, paving the way for more robust and
generalizable SER models.

2. Related Work
2.1. Domain Adaptation

Various domain adaptation methods have been explored, includ-
ing supervised, semi-supervised, and unsupervised approaches.
In supervised learning, Shami and Verhelst [14] enhanced
dataset diversity by merging multiple corpora, while Hassan
et al. [16] improved cross-domain generalization by assigning
higher weights to critical training samples. Schuller et al. [15]
similarly optimized domain adaptation by strategically select-
ing essential samples. In semi-supervised learning, Abdelwa-



hab and Busso [19] proposed selecting a subset of samples us-
ing active learning strategies. For unsupervised approaches,
Parthasarathy and Busso [20] employed an encoder-decoder
framework to learn shared representations, enhancing SER per-
formance. Abdelwahab et al. [21] leveraged the gradient rever-
sal method in a domain classifier to extract non-discriminatory
features, facilitating adaptation. Liu and Tuzel [22] used two
generative adversarial networks (GANs), each dedicated to
a domain but sharing parameters to extract common features
across domains.

Cross-lingual domain adaptation is particularly challeng-
ing due to linguistic differences. Feraru et al. [13] showed
that adaptation performance declines for languages from dif-
ferent families. To address this problem, Upadhyay et al. [7, 8]
used the most similar phonemes between two languages as an-
chors for knowledge transfer, improving adaptation. Amiri-
parian et al. [23] compiled a multi-lingual corpus from 37 ex-
isting datasets and designed an enhanced version of HuBERT
to achieve better cross-lingual SER performance. Zehra et al.
[24] employed ensemble learning, aggregating predictions from
multiple classifiers via majority voting. Additionally, Lee [25]
enhanced cross-lingual SER performance through normaliza-
tion techniques and multitask learning, incorporating auxiliary
tasks such as gender and language classifications.

2.2. Discrete Speech Units and InfoLoss

Discrete representations are latent codes derived by mapping
features to their nearest code in a predefined set, known as a
codebook, through a process called nearest-neighbor quantiza-
tion [26]. Van Der Oord et al. [27] introduced the vector quan-
tized variational autoencoder (VQ-VAE) framework, demon-
strating the effectiveness of discrete encoded latent space. Dis-
crete features, as opposed to continuous representations, sig-
nificantly reduce computational complexity, enabling scalable
models for more complex tasks. The efficacy of compact and
meaningful discrete codebook has been validated in models
such as VQ-GAN [28] and VQ-Diffusion [29]. Sun et al. [17]
proposed the TransVQA framework, leveraging a quantized
codebook for unsupervised domain adaptation in image clas-
sification. This approach incorporates global and local losses
for domain and class alignment, respectively. This study serves
as a building block for our formulation for cross-lingual SER.

The quantization process often results in information loss.
To address this limitation, Lazebnik and Raginsky [18] pro-
posed an information loss minimization approach that jointly
optimizes feature and class probability quantization, preserving
discriminative information. Our proposed method integrates a
shared codebook learned from both the Euclidean feature space
and the posterior class-label space, aiming to minimize cross-
lingual domain shifts and enhance performance on unlabeled
data. This paper adapts the TransVQA [17] approach to SER
and enhance its framework by minimizing quantization error
using the InfoLoss formulation [18].

3. Methodology
The features of TransVQA [17], such as the latent codebook
of discrete features and loss functions dedicated to aligning do-
main and class distributions, are effective for unsupervised do-
main adaptation. The TransVQA framework’s ability to learn
discriminative features across multiple domains makes it well-
suited for addressing cross-lingual differences in SER. There-
fore, we build on this framework by adapting its alignment ob-
jectives to address the intrinsic challenges in SER. A key dis-
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Figure 1: Unsupervised domain adaptation using discrete
speech representations. The approach has three objectives to
(1) reduce domain mismatch, (2) align emotional classes, and
(3) mitigate information loss due to quantization.

tinction from the TransVQA framework and our proposed ap-
proach is the inclusion of an additional objective to compensate
for information loss caused by feature quantization.

Figure 1 illustrates the proposed unsupervised domain
adaptation strategy that utilizes a latent codebook of discrete
features to represent both labeled and unlabeled domains. The
approach incorporates domain and class distribution alignment
objectives, inspired by the TransVQA framework. To mitigate
the quantization loss, we propose to utilize the InfoLoss [18],
which aims to minimize the discrepancy between the true pos-
terior class distribution and the predicted label distribution de-
rived from the codebook features. With the help of InfoLoss, the
latent codebook learns a shared quantized space across both do-
mains by leveraging representations from the Euclidean feature
space and the simplex of posterior class distributions in a three-
objective process. The first two objectives focus on domain-
level and class-level alignment, while the third objective refines
the quantized space through the InfoLoss and cross-entropy loss
for SER. The shared codebook captures discriminative features
common to both domains, enhancing domain adaptation. It
is expected to encode essential prosodic, spectral, and tempo-
ral characteristics while filtering out domain-specific variations
such as speaker identity, accent, and background noise. This se-
lective representation ensures robustness to cross-lingual varia-
tions, effectively reducing domain shifts.

We conducted the adaptation process using the wavLM [30]
speech representation. The wavLM feature extraction model,
obtained from the Hugging Face library, was fine-tuned on the
MSP-Podcast corpus [11] with SER as the downstream task.
To expedite the convergence of the codebook, we initialized it
with centroids derived from the clustered feature space of both
labeled and unlabeled domains. These centroids were obtained
by applying k-means clustering to the wavLM feature space, in-
corporating frames from both domains. This initialization pro-
vides a structured starting point for the codebook, enabling it to
capture shared representations more effectively.

In Figure 1, each frame of both labeled and unlabeled ut-
terances is mapped into a corresponding vector from the code-
book, which is then updated during the backpropagation step.
Among the N available codes in the codebook, the nearest code
for each frame is selected using the k-nearest neighbors (kNN)
algorithm [31] and utilized in subsequent alignment objectives
as described below.

3.1. Domain-Level Alignment

As described in Figures 1 and 2, the first objective of our ap-
proach aims to reduce the discrepancy between the labeled and
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Figure 2: Objectives for our unsupervised domain adaptation
using discrete speech representations. Objective-1 reduces do-
main shift, Objective-2 aligns classes from different domains,
Objective-3 helps to reduce quantization loss.

unlabeled domains by minimizing the Euclidean distance be-
tween their wavLM features – the labeled domain (fs) and the
unlabeled domain (ft) – along with their corresponding quan-
tized codes Ci(s) and Cj(t), as formulated in Equation 1. The
first term in Equation 1 facilitates adaptation in the unlabeled
domain by leveraging prior knowledge from the codebook, de-
rived from the labeled domain. Meanwhile, the second term
ensures that the labeled domain aligns with the representations
of the unlabeled domain encoded within the codebook. Addi-
tionally, α is a scalar parameter controlling the relative align-
ment strength. By optimizing L1, the codebook’s latent space
is structured to capture shared representations, thereby promot-
ing effective alignment between both domains while minimiz-
ing the domain gap.

L1 = α · (∥Ci(s)− ft∥2) + ∥Cj(t)− fs∥2 (1)

3.2. Class-Level Alignment

The domain-level alignment loss (L1) focuses on reducing the
overall domain discrepancy without explicitly considering class
separation, which may lead to confusion. A bottleneck layer is
introduced in the second stage to bring the same class from both
domains together while maintaining greater inter-class separa-
tion. As illustrated in Figure 1, the selected quantized codes
Ci(s), Cj(t) are concatenated with their corresponding wavLM
input features fs, ft and passed through the bottleneck layer,
which consists of a linear transformation, a layer normalization
component, and a non-linear activation function.

L2 = β ·
Nc∑
c=1

∥Bc
s −Bc

t ∥ (2)

Class alignment is performed on the bottleneck output pairs
of Bc

s and Bc
t , where Bc

s corresponds to the labeled domain and
Bc

t represents the unlabeled domain, both belonging to the same
class c. The total number of classes is denoted by Nc, while
β is a scalar weighting parameter that regulates the alignment
strength. Since the unlabeled domain lacks true labels, pseudo-
labels are assigned to facilitate alignment. The pseudo-labels
are derived from a SER model without adaptation, trained only
with the labeled data (i.e., source domain). As defined in Equa-
tion 2, L2 minimizes the Euclidean distance between bottleneck
features of the same class across both domains, reducing intra-
class variability while maintaining inter-class separation. As
illustrated in objective 2 of Figure 2, class alignment improves
classification performance in the unlabeled domain by ensur-
ing that class representations remain consistent across domains,
thereby enhancing the effectiveness of cross-lingual adaptation.

3.3. InfoLoss

The previous stages operate within the Euclidean feature space,
where the input wavLM features are quantized by mapping each
frame to its nearest codebook entry. As described in objec-
tive 3 of Figure 2, this quantization process often leads to a
loss of discriminative label information, thereby reducing the
effectiveness of the learned representations. To mitigate quan-
tization loss, we incorporate the information loss minimization
(InfoLoss) [18], which operates within the posterior class label
simplex rather than the Euclidean feature space.

The primary objective of InfoLoss is to optimize the code-
book assignments by minimizing the Kullback-Leibler (KL) di-
vergence between the posterior class distributions of feature
vectors and the learned cluster class distributions. This objec-
tive ensures that the quantized representations preserve essen-
tial label information necessary for accurate classification. The
InfoLoss function is formulated in Equation 3,

L3 = γ · 1

N

N∑
i=1

DKL(p(y|fs)∥q(y|Ci(s))) (3)

where p(y|fs) denotes the posterior probability of the true class
for the labeled domain, and q(y|Ci(s)) represents the class
probability distribution associated with the selected code. The
hyperparameter γ controls trade-off between label information
preservation and quantization feature-space similarity.

Since InfoLoss relies on the posterior probabilities of the
true class labels, it is applied exclusively to the labeled domain.
Its primary objective is to minimize the distributional discrep-
ancy between the model’s predicted class distributions, derived
from quantized feature representations, and the ideal class dis-
tributions based on ground-truth labels. Effectively, InfoLoss
encourages the predictions obtained from the quantized feature
vectors to align more closely with ground-truth labels, thereby
retaining essential class-specific information to enhance the dis-
criminative capacity of the learned embeddings.

Equation 4 describes the overall objective of the framework
which includes the domain-level alignment loss (L1), class-
level alignment loss (L2), InfoLoss (L3), and cross-entropy loss
(LCE) for the SER task. The cross-entropy loss is computed
exclusively on the labeled domain.

Ltotal = L1 + L2 + L3 + δ · LCE (4)

4. Experimental Settings
4.1. Emotional Datasets

To rigorously evaluate the effectiveness of the proposed frame-
work, we conduct cross-lingual experiments using datasets from
English and Taiwanese-Mandarin, which have diverse phonetic
and prosodic structures.

We utilize the MSP-Podcast corpus (v1.11) [11] as the la-
beled English dataset, and the BIIC-Podcast corpus [10] as the
unlabeled Taiwanese-Mandarin dataset. Both databases com-
prise natural emotional speech collected from diverse audio
recordings. For this study, we focus on four emotion categories:
happiness, sadness, anger, and neutral state. The MSP-Podcast
corpus contains 100,896 samples, partitioned into 57,230 for
training, 12,521 for development, and 21,032 for testing. We
utilize 37,663 samples from the BIIC-Podcast corpus as the un-
labeled samples. This set is used for both training and evalu-
ating the models. The emotional labels for these samples are
never used during training.



Table 1: F1-score comparison on the BIIC-Podcast dataset. Re-
sults marked with (*) indicate statistically significant improve-
ments compared to settings without the symbol (two tailed t-test,
p-value<0.05).

Method F1-score
No adaptation 0.480
Ladder network 0.486
Adversarial domain adaptation 0.503
kNN-VC 0.494
Proposed Method 0.551*

4.2. Implementation

The codebook is initialized with centroids obtained from the k-
means clustering in the wavLM feature space, which is formed
by merging frames from both domains. The codebook size (N )
is empirically set to 1,024. The SER classifier follows a struc-
ture similar to the bottleneck layer, consisting of a single linear
layer with a dropout rate of 0.5. The relative trade-off scalar
constants are set as α = 10, β = 4, γ = 0.5, and δ = 0.5 to
balance the loss components, ensuring equal emphasis on each
objective. We evaluate performance using the F1-score, which
accounts for true positive (TP), false negative (FN), and false
positive (FP) rates to measure classification effectiveness. For
performance comparison, we use three unsupervised baselines:
the ladder network [20], an adversarial domain adaptation with
gradient reversal [21], and kNN-VC [32].

5. Experimental Results
Table 1 presents the F1-scores of various methods evaluated
on the BIIC-Podcast dataset, comparing the proposed approach
with both domain adaptation baselines and the model with-
out adaptation. The results indicate that the proposed method
achieves the highest performance, with an F1-score of 0.551,
representing a 14.8% improvement over the no-adaptation base-
line. We conduct a two-tailed t-test to evaluate the results, as-
serting significance at p-value < 0.05. The statistical test shows
that the proposed approach is significantly better than all other
methods. Among the baselines, the adversarial domain adapta-
tion method and kNN-VC strategy achieve an F1-score of 0.503
and 0.494, respectively, showing moderate improvement. The
ladder network strategy achieves an F1-score of 0.486, failing to
offer substantial performance gains in cross-lingual SER tasks.
These findings highlight the effectiveness of the proposed ap-
proach in mitigating domain shifts while demonstrating the lim-
itations of existing adaptation techniques in cross-lingual SER.

The performance gain achieved by the proposed approach
can be attributed to the shared codebook quantization strat-
egy, which discretizes continuous feature spaces into struc-
tured latent representations, ensuring better alignment across
cross-lingual domains. The discretization process forces the
model to focus on essential speech characteristics while ignor-
ing domain-specific variations, leading to enhanced generaliza-
tion. The quantization process significantly reduces the com-
plexity of the model by representing both domains using only
1,024 dimensional discrete vectors. This reduction in complex-
ity enhances computational efficiency, lowers memory require-
ments, and accelerates training and inference. Moreover, by
constraining the feature space to a finite set of representative
vectors, quantization helps mitigate overfitting, leading to im-
proved generalization and higher accuracy, particularly in cross-
domain adaptation. Additionally, a more structured representa-
tion aids in stabilizing optimization, ensuring more robust and
consistent learning across diverse datasets.

Table 2: Ablation study showing the impact of different compo-
nents of the proposed approach on its performance.

Ablation study F1-score
No adaptation 0.480
Proposed Method 0.551
No Codebook 0.539
No Bottleneck 0.549
No Bottleneck, No InfoLoss 0.533
No Concatenation 0.551

The ablation study presented in Table 2 highlights the con-
tributions of key components in the proposed approach. Re-
moving the codebook (objectives 1 and 3) results in a per-
formance drop to 0.539, indicating its crucial role in learning
shared discrete representations that generalize across domains.
Similarly, removing the bottleneck layer (objective 2) leads to
a minor performance reduction (0.549), suggesting that while it
refines feature representations, it is not the most critical com-
ponent for adaptation. The combination of removing the bot-
tleneck and InfoLoss (objectives 2 and 3) further lowers the
F1-score to 0.533, demonstrating the significance of InfoLoss
in preserving discriminative information lost during quantiza-
tion. Interestingly, the model performs equivalently without
concatenation, suggesting that the quantized code can represent
domains as effectively as the continuous-space features while
inherently possessing domain alignment capabilities, making it
suitable for domain adaptation tasks. Moreover, the proposed
approach achieves better alignment between both domains de-
spite relying on pseudo-labels, which are derived from a model
without adaptation and may contain errors. This result high-
lights the effectiveness of discrete representations in capturing
essential characteristics. Overall, these findings validate the
importance of quantization and information loss minimization
in cross-domain adaptation and suggest that further improve-
ments, such as refining pseudo-label quality, could enhance
cross-lingual adaptation performance.

6. Conclusions
This paper presented an effective framework for unsupervised
domain adaptation in speech emotion recognition by transform-
ing continuous feature representations into a structured discrete
space. The proposed approach leverages codebook quantization
to enhance domain alignment while mitigating quantization-
induced information loss through InfoLoss. The method facil-
itates robust knowledge transfer and improved generalization
across datasets by promoting alignment between two highly
linguistically dissimilar domains. Experimental results demon-
strate the effectiveness of the proposed framework, achieving an
F1-score of 0.551, which represents a 14.8% improvement over
a model without adaptation. Additionally, the method outper-
forms all state-of-the-art unsupervised domain adaptation tech-
niques, highlighting its capability to effectively bridge domain
discrepancies. The ablation study further validates the impor-
tance of key components, particularly the codebook and In-
foLoss, in preserving discriminative information and improving
adaptation performance. As future research directions, further
exploration of codebook hyperparameters can provide deeper
insights into optimizing quantized representations for different
linguistic domains. Additionally, improving pseudo-label accu-
racy can enhance class-level alignment, leading to more precise
adaptation in unlabeled target domains. Extending this frame-
work to multilingual and low-resource speech datasets could
further establish its generalizability and practical applicability
in real-world SER systems.
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