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ABSTRACT

Studies have shown that ranking emotional attributes through prefer-
ence learning methods has significant advantages over conventional
emotional classification/regression frameworks. Preference learn-
ing is particularly appealing for retrieval tasks, where the goal is
to identify speech conveying target emotional behaviors (e.g., posi-
tive samples with low arousal). With recent advances in deep neural
networks (DNNSs), this study explores whether a preference learn-
ing framework relying on deep learning can outperform conven-
tional ranking algorithms. We use a deep learning ranker imple-
mented with the RankNet algorithm to evaluate preference between
emotional sentences in terms of dimensional attributes (arousal, va-
lence and dominance). The results show improved performance over
ranking algorithms trained with support vector machine (SVM) (i.e.,
RankSVM). The results are significantly better than performance re-
ported in previous work, demonstrating the potential of RankNet to
retrieve speech with target emotional behaviors.

Index Terms— Emotion recognition, preference learning, rank-
ing emotions

1. INTRODUCTION

Recognizing expressive behaviors is one of the key challenges in Au-
man computer interaction (HCI) with important applications across
domains (i.e., healthcare, education, security, entertainment). Con-
ventionally, automatic emotion recognition systems classity affec-
tive behavior into emotional categories using speech, video and other
physiological cues [1-3]. They can also recognize emotional behav-
iors described by attributes such as arousal (calm versus active), va-
lence (negative versus positive) and dominance (weak versus strong)
[4,5]. For emotional attributes, the machine learning tasks usually
consist of regression problems, where the task is to predict the value
of the attribute [6, 7], or binary or multi class problems, where the
goal is to detect discrete levels of these emotional attributes (i.e.,
low versus high arousal) [8]. An appealing alternative formulation
that has received less attention is ranking emotional behaviors using
preference learning frameworks [9].

Preference learning is a popular framework in retrieval tasks. In-
stead of recognizing categories or predicting the values of dependent
variables, preference learning determines the relative ranking be-
tween samples with respect to a given metric. This problem is com-
monly formulated as pairwise comparisons between pairs of sam-
ples. Preference learning is very appealing for applications in af-
fective computing. For example, it can be used to rank-order ag-
gressive behaviors in surveillance applications, to identify emotional
hotspots [10] in longitudinal recordings, and to retrieve target be-
haviors with given emotions [11]. However, there are few studies
on preference learning in affective computing [9, 12-16]. A popu-
lar framework in these studies is a ranker trained with support vec-
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tors machines (Rank-SVM) [17]. Recently, deep neural networks
(DNNs) have become popular in many speech processing tasks for
their superior performance over other statistical methods. This study
explores the use of deep learning for preference learning in ranking
emotional attributes (arousal, valence, and dominance). To the best
of our knowledge, this is the first study that systematically evaluates
emotional rankers with DNN.

This study trains rankers using RankNet, which has a DNN ar-
chitecture [18]. We implement the approach creating a ranker for
each emotional attribute (e.g., an arousal ranker). Following the
work in Lotfian and Busso [14], we define relative labels for pair-
wise comparisons by selecting samples with attribute scores sepa-
rated by a margin. We compare the performance of rankers trained
with RankNet with those trained using RankSVM, keeping other pa-
rameters constant. We show that rankers trained with RankNet per-
form significantly better than rankers trained with Rank-SVM in re-
trieving high and low levels of arousal, valence and dominance. The
order of the ranking is also better with RankNet.

2. RELATION TO PRIOR WORK

2.1. Preference Learning in Emotion Recognition

There are few studies that have evaluated preference learning in af-
fective computing. Cao et al. [19,20] proposed rankers for categor-
ical emotions. For a given emotion, they trained the rankers to de-
termine the order of the samples according to a given emotion (e.g.,
happy rankers). Using the consensus labels, they formed relative la-
bels by pairing one sample from the target emotion, the preferred
one, and a second sample from another emotion. They trained a
RankSVM per emotion using these relative samples. They used the
results of the rankers as a mid-level representation to recognize dis-
crete emotional categories. Lotfian and Busso [15] proposed a prob-
abilistic framework to define preference learning samples, exploiting
individual annotations. Instead of relying on the consensus labels,
this framework considered inter-evaluator agreement and intra-class
confusion between emotions to determine a relevance score for a
given emotion. Then, this relevance score is used to define relative
labels for preference learning by setting a margin.

Studies have proposed rankers for emotional attributes. Mar-
tinez et al. [9] used a preference learning procedure to learn from
continuous emotional attributes, showing that rank based transfor-
mations of arousal and valence lead to better generalized models
than grouping them into classes. Lotfian and Busso [14] showed the
practical considerations for implementing preference learning algo-
rithms on emotion, including the margin required to define relative
labels and the number of pairs used for training. Parthasarathy et
al. [13] proposed an alternative framework to define relative labels
by looking at the trends where raters agree in time-continuous emo-
tional traces. None of these studies used deep learning to train the
rankers, which is the main contribution of this study.
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2.2. Preference Learning with Deep Learning

Deep learning has revolutionized the field of speech processing,
achieving performance that are significantly superior to the ones
achieved by other competitive approaches. The generic quality of
DNNs for learning and feature representation makes DNN an ideal
framework for preference learning. However, very few studies have
considered ranking with DNNs. Severyn and Moschitti [21] used
comvolutional neural networks (CNNs) to rank short text pairs in
retrieval tasks. Burges et al. [18] proposed to use gradient descent to
learn ranking functions. We follow this approach in our experimen-
tal evaluation. While using gradient descent for ranking has been
proposed, to the best of our knowledge, this is the first study that
uses DNN to rank emotional attributes with acoustic features.

3. DATABASE

This study relies on two emotional databases with conversational
speech, where we train the models with the USC-IEMOCAP [22]
corpus, and we test the models with the MSP-IMPROV corpus [23].
The corpus were collected from different speakers providing speaker
independent partitions. We intend to create models that generalize
by using different databases for training and testing

The USC-IEMOCAP database contains 12 hours of recordings
from ten actors who participated in dyadic sessions. Multimodal in-
formation was collected: speech, videos, and motion capture data
for the face, head and hands of the subjects. This study only uses
speech. The dyadic sessions consists of both emotional scripts pro-
vided to the actors as well as improvised interactions. These meth-
ods elicited naturalistic interactions between actors. Each speak-
ing turn was annotated by two raters, using a 5 likert-scale self-
assesment manikins (SAMs) for arousal (1-calm, 5-excited), valence
(1-negative, 5-positive), and dominance (1-weak, 5-strong). The
consensus labels is the average of the scores, which range from 1
to 5. Busso et al. [22] gives the details of the corpus.

The MSP-IMPROV corpus includes dyadic interactions from 12
actors (6 male, 6 female). The key feature of this corpus is the con-
trol of lexical content over different emotions while preserving the
perception of naturalness. This goal was achieved by (1) defining
20 target sentences, and (2) creating emotion-dependent scenarios
per target emotion, which lead one of the actors to speak the target
sentences. This approach allows actors to express emotions as dic-
tated by the context of the scenarios, creating expressive behaviors
that are perceived more natural than read renditions of the target sen-
tences [23]. In addition to the target sentences, the corpus includes
all the speaking turns of the improvisation and the natural interac-
tion between actors during the breaks. The corpus has 8438 speak-
ing turns, which are emotionally annotated using a novel framework
for crowdsourcing, which tracks the performance of the evaluators
in real time, stopping the evaluation when the performance dropped
below a predefined threshold [24]. Similar to the USC-IEMOCAP
corpus, the MSP-IMPROV is evaluated for primitive attributes by at
least five evaluators using 5 likert-scale SAMs for arousal, valence
and dominance. We average the scores, which range from 1 to 5.
Busso et al. [23] gives the details of the corpus.

4. RANKING EMOTIONAL ATTRIBUTES

4.1. RankNet

While DNNs have been popular for their ability to learn and rep-
resent data, we are not aware of any study that has explored their
benefits in ranking emotions. Burges et al. [18] introduced RankNet,
an algorithm that uses gradient descent to perform preference learn-
ing between pairs of samples. The neural network model in RankNet

is given by the function f, which maps the feature vector ® into a
score f(®). Given two samples U; and U; with feature vectors ®;
and @;, the probability that U; is preferred over U; is given by P;;.
This probability is mapped by the sigmoid function:

1
= ety @
where s; = f(®;) and s; = f(®;). During training, the ideal
probability P;; is set according to the relative labels between pairs
of samples, where P;; = 0 implies that U; is preferred over U;, and
P;; = 1 implies that U; is preferred over U;. The cross entropy is
then applied as a cost function to measure the deviation of the model

output P;; from the ideal probability P;;:
C = —PijlogPZ-j — (1 - pij)log(l - P”) (2)

Equation 2 simplifies to C' = log(1 + e~ °(*i=%)) when P;; =
1, and to C = log(1 4+ e~?(i=%)) when P,; = 0. Therefore, the
cost function is symmetrical on whether Uj; is preferred over U; or
vice versa. While the original implementation has an option to in-
clude samples that are equivalent (e.g., P;;=0.5), we force RankNet
to provide a preferred sample. We implemented a feed forward DNN
architecture, consisting of two hidden layers of size 256 each. We
use sigmoidal units, following Equation 1, with o = 2. A learning
rate of 10~° was used for a maximum of 100 epochs. The DNN was
implemented using the CNTK toolkit [25].

4.2. RankSVM

In Lotfian and Busso [14], we evaluate a RankSVM framework to
recognize emotional attributes. For comparison, we include results
from RankSVM as baseline. RankSVM, introduced by Joachims
[17], uses SVM for preference learning. Let the set P denote the
preference learning training set. The pair (¢, 7) € P if the i-th sam-
ple is preferred over the j-sample. If ®; and ®; are the feature
vectors for the i-th and j-th samples, then the optimization problem
is formulated a:

.1 2

min _{lw[|"+C ) &

w,& 2 i,ggP (3)
s.t.<w7 (‘I% —q>j)> > 1—{1‘,]',&,]' >0 fori,5 € P
where £ represents the slack variable and C' the soft margin vari-
able. The optimum weight vector @ minimizes Equation 3, which
is equivalent to maximize the margin of the support vectors. With
W, the model can be tested by measuring (b, (®; — ®;)). If
(w, (®; — ®;)) > 0 then 4-th is preferred over j-th sample. There-
fore, this formulation for pairwise ranking algorithm reduces to a
binary classification problem once the features of the two samples
are subtracted (i.e., ®; — ®;).

4.3. Relative Labels for Emotional Attributes

A major drawback of collecting relative labels from scratch is the
computational complexity involved. For N training samples, we
would need N x (N —1)/2 comparisons for pairwise labels. There-
fore, we rely on the existing annotations to form our relative labels.
The perception of emotional behaviors varies across raters, produc-
ing labels that are noisy. To increase the reliability of training pairs,
we create relative labels by selecting pairs of samples that are sepa-
rated by at least a margin ¢. There is a tradeoff between the reliability
of the relative labels and the size of the training set. As the margin
increases, the size of the corpus decreases since fewer samples sat-
isfy the requirement. The evaluation considers different values for ¢
(Sec. 6.1).
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‘We consider the evaluation in Lotfian and Busso [14] to select
the number of pairs for training, which indicated that the perfor-
mance of rankers saturates after 10,000 training pairs. Therefore, we
randomly select 10,000 pairs of samples that satisfy this margin.

5. EXPERIMENTAL EVALUATION AND RESULTS

This section describes the acoustic features used to train the rankers
(Sec. 5.1), and the experimental setting (Sec. 5.2).

5.1. Acoustic Features

Emotion affects different aspects of speech production. As a result, it
is common to consider multiple acoustic features for emotion recog-
nition. Previous studies have proposed several feature sets that in-
clude thousand of features [26]. This high dimension feature vector
is usually reduced using feature selection. While this process opti-
mizes performance of the classifiers, the results are hard to replicate
by other researchers, since the individual features in the selected fea-
ture set are not reported. Recently, Eyben et al. [27] introduced the
Geneva Minimalistic Acoustic Parameter Set (GeMAPS) as a set of
standard features for affective computing. The GeMAPS set consists
of a set of minimalistic audio features that were selected based on
their performance in previous studies, ease of automatic extractabil-
ity, and theoretical significance. Having this reduced set of features
provides a platform for reproducing research, eliminating the varia-
tion caused by using different feature sets.

This study uses the extended parameter set (¢cGEMAPS). The
common extraction procedure involves extracting low-level descrip-
tors (LLDs) which are features extracted on a frame-by-frame ba-
sis.Then, a set of global functionals (eg. arithmetic mean) are ap-
plied on the LLDs to extract high level features (HLFs). This set has
88 features, which are extracted with the OpenSMILE toolkit [28].
Eyben et al. [27] gives the details of the feature set.

5.2. Experimental Settings

As mentioned in Section 3, the USC-IEMOCAP database is used for
training the models, and the MSP-IMPROV is used for testing the
models. An important parameter in defining the relative labels for
the rankers is the margin needed to consider that one sample is pre-
ferred over other. For RankNet, we evaluate ¢ € {0, 1,2, 3}. Notice
that the range of the annotations is from 1 to 5 for the three emotional
attributes (we present the results in Section 6.1). For RankSVM,
we rely on the parameters selected in Lotfian and Busso [14]. In
that study, we evaluated practical consideration for preference learn-
ing using RankSVM, including optimal values for this margin. The
study considered the SEMAINE database, where the labels range
from -1 to 1. The optimal margin was ¢ = 0.5 for arousal and
t = 0.45 for valence (the annotations for the SEMAINE database
does not include dominance). Since the range in both corpora con-
sidered here is from 1 to 5, we set the margin at ¢ = 1.0 for arousal
and t = 0.9 for valence. For dominance, we set the margin at
t = 1.0 since arousal and dominance are commonly correlated.

In addition to the two ranking algorithms (RankNet, RankSVM),
we train a regression model with DNN, which we refer to as
DNNRegression. The model predicts the values of the attributes
for each testing sentence, which are then sorted creating a ranked
list. For consistency, we also used two hidden layer, feed forward
architecture with 256 nodes each. The nodes are activated by a
sigmoidal function.

We evaluate the performance with precision at k (P@k), which
is commonly used in retrieval tasks. P@k measures the precision in
retrieving k% of the samples. Let’s consider valence as an exam-
ple. First, we estimate the median of the valence scores in the test
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Fig. 1. Evaluation of the margin ¢ for RankNet. P@10, P@20, P@30
for different ¢ € {0, 1,2, 3}.

set. Samples with scores below the median are considered as “low
valence”, and samples above the median are considered as “high va-
lence”. Second, we rank the testing samples using the ranker. We
consider the top k% of the list and the bottom £% of the list. Finally,
we consider success if the retrieved samples at the top of the list are
from the “high valence” group, and the samples at the bottom of the
list are from the “low valence” group. For example, P@50 includes
all the samples (50% from the top, and 50% from the bottom of the
list). The advantage of this approach is that we can easily compare
rankers, regression models, and binary classifiers (this study only
considers rankers and regression models).

We also evaluate the results with the Kendall’s Tau coefficient,
which measures the correlation between two ordered lists. The value
for 7 varies between [-1,1], where -1 indicates reverse order, and 1
indicates perfect order. Unlike P@k, which assumes a binary split to
define success, 7 was calculated considering the ordinal ranking of
all testing samples.

6. RESULTS

6.1. Performance of RankNet for Different Margins

The margin between samples to form the relative labels for train-
ing plays an important role in the performance of the ranking algo-
rithm [14]. Figure 1 shows the performance of the rankers for P@10,
P@20, P@30 in terms of the margin ¢. We evaluate ¢ € {0, 1,2, 3}
for arousal (Fig. 1(a)), valence (Fig. 1(b)) and dominance (Fig.
1(c)). Notice that the range in the attributes is from 1 to 5, so the
maximum separation between two samples is 4. The figures show
similar performance for ¢ = 1 and ¢ = 2, which indicate that the
approach is not sensitive to the margin ¢ within this range. For other
values of ¢, the performance drops. We implement the rest of the
evaluation with ¢ = 2 for RankNet.
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Fig. 2. Precision at k for RankNet, RankSVM and DNNRegression.

6.2. Comparison with Other Methods

Figure 2 gives the performance for arousal (Fig. 2(a)), valence
(Fig. 2(b)), and dominance (Fig. 2(c)). The figures include the
two ranking schemes, RankNet and RankSVM, and the DNN re-
gression model. When we compare the ranking algorithms, the
results demonstrate that RankNet outperforms RankSVM by a large
margin. This result is clearly observed for arousal, valence and
dominance. When we compare regression (DNNRegression) and
ranking (RankNet) frameworks built with deep learning, the re-
sults are not conclusive. The results are very similar, although the
performance for RankNet is always slightly better. The separation
between RankNet and DNNRegression increases for valence. In
Lotfian and Busso [14], the results for RankSVM was significantly
better than support vector regression (SVR). These differences are
attenuated when ranking and regression frameworks are trained with
deep learning.

Table 1 lists the performance of RankSVM, RankNet and
DNNRegression at three values of k: P@10, P@20 and P@30.
We compare whether the difference between conditions are statis-
tically significant, using the one tailed z-test on the difference in
population proportions, asserting significance at p-value=0.01. The

Table 1. Precision@k for k =10%, 20%, 30%.

[ RankSVM ] RankNet | DNNRegression

Arousal

P@10 85.77 88.02 87.54

P@20 80.81 83.93 83.72

P@30 77.15 79.32 79.02
Valence

P@10 63.46 71.29 69.28

P@20 59.79 64.77 63.76

P@30 57.26 61.66 61.13

Dominance

P@10 76.79 86.15 84.67

P@20 73.97 79.94 79.61

P@30 70.95 75.65 75.33

Table 2. Kendall’s Tau coefficient to assess order of the ranked list.

RankSVM | RankNet | DNNRegression
Arousal 0.36 0.41 0.41
Valence 0.08 0.14 0.13
Dominance 0.28 0.35 0.34

table shows that RankNet and DNNRegression algorithms perform
significantly better than RankSVM (p-value < 0.01), for all cases,
with the exception of P@10 for arousal (see Fig. 2(a)). Even though
rankers trained with RankNet perform better than DNNRegression,
the differences are not significant (p-value < 0.01). We obtain an
absolute gain of 7.83% for P@10 in valence, when we use RankNet
instead of RankSVM. Previous studies have shown that valence is
a challenging emotional attribute for machine learning frameworks
trained with speech features [29]. We significantly improve our
performance for valence when we use RankNet (see Fig. 2(b)). We
also observe an increase in performance for dominance, when using
RankNet. The improvement over RankSVM is 9.36% (absolute),
which is the highest performance gain over RankSVM observed in
this evaluation.

Table 2 shows the values for Kendall’s Tau for RankNet,
RankSVM, and DNNRegression. The table shows that RankNet
provides the best performance. We analyze the statistical signif-
icance of the differences in the results after applying the Fisher
transform to normalize the values to follow a Gaussian distribu-
tion. RankNet and DNNRegression algorithms are significantly
better than RankSVM (p-value < 0.001). The differences between
RankSVM and DNNRegression are not significant, confirming the
results shown in Table 1. Notice that the values in Table 2 are
significantly better than the results reported in related work [9].

7. CONCLUSIONS

The study showed the benefits of using deep learning in ranking
emotional attributes. We utilized RankNet, which uses the gradi-
ent descent for pairwise comparisons between samples. With cross-
corpora evaluations, the results showed that RankNet algorithm per-
form significantly better than RankSVM. For valence, the results
also showed that RankNet gives better performance than a DNN-
based regression algorithm.

In our future work, we will implement DNN rankers for cat-
egorical emotions using the relative labels defined in Lotfian and
Busso [15] (probabilistic relevant scores). Likewise, we will eval-
uate temporal evolution of the emotions by using recurrent neural
networks (RNNs). This approach will allows us to consider contex-
tual information for each of the pairwise comparisons.
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