Phonetic Anchor-Based Transfer Learning to Facilitate Unsupervised Cross-Lingual Speech Emotion Recognition

Shreya G. Upadhyay, Luz Martinez-Lucas, Bo-Hao Su, Wei-Cheng Lin, Woan-Shiuan Chien, Ya-Tse Wu, William Katz, Carlos Busso, Chi-Chun Lee

Overview

- Aim: To develop a new approach for cross-lingual speech emotion recognition (SER) by integrating phonetic constraints as an anchor
- Propose: A twofold approach
 - First analyzes emotion-specific phonetic commonalities (vowels) across languages
 - Leverages these common vowels as an anchoring mechanism to facilitate crosslingual SER

Outline

- Introduction
- Literature Survey
- Emotion-specific Commonality
 - Phonetic Analysis
 - **Emotion-Specific SER Analysis**
- Anchor-based Cross-lingual SER
- Conclusion and Future Work

Introduction

- Speech Emotion Recognition (SER) systems diverse application needs generalization across different domains
- Common formulation:
 - Mitigate mismatches of Source <--> Target domains
 - Transfer learning, semi-supervised learning, few-shot learning etc.
 - Optimizing to decrease a distance metric of Source <--> Target features
 - Variations on Generative Adversarial Network (GAN)
- Models are useful but come purely from a computational angle
- In case of cross-lingual scenario, what about knowledge of the languages?

Language Agnostics?

Literature Says

- Emotion perception and the acoustic feature space depend on the language
- Discriminative emotional information can be observed at the phoneticlevel
- Some of these emotional patterns at phone-level generalize to other languages
- Simple phoneme-class dependent emotion classifiers and fine-tuned deep models (e.g., Wav2Vec2) can effectively improve emotion recognition rates

Research Entails

- Two investigations:
 - Analyze the emotion-specific commonality at the phonetic level across languages: To find some vowels present emotion-specific commonality
 - Devise an anchoring mechanism: To leverage the phonetic commonalities across languages
- Two large-scale in-the-wild natural speech emotion corpora considered:
 - MSP-Podcast (American English): Intonation language
 - BIIC-Podcast (*Taiwanese Mandarin*): Tonal language

Emotion-Specific Commonality

Commonalities over the set of ``common ground'' vowels

[i,
$$\partial$$
, α , ε , σ , u]

Considered emotional classes

[Happiness, Anger, Sadness, and Neutrality]

- Two Analyses:
 - 1) Phonetic Analysis
 - 2) Emotion-Specific SER Analysis

Phonetic Analysis: Vowel space plot

- Common vowels span and their positions are consistent with the expected from the literature
- Visible vowel commonality over corpora
 - Vowels /i/ and /a/ cover similarity regions in their respective languages

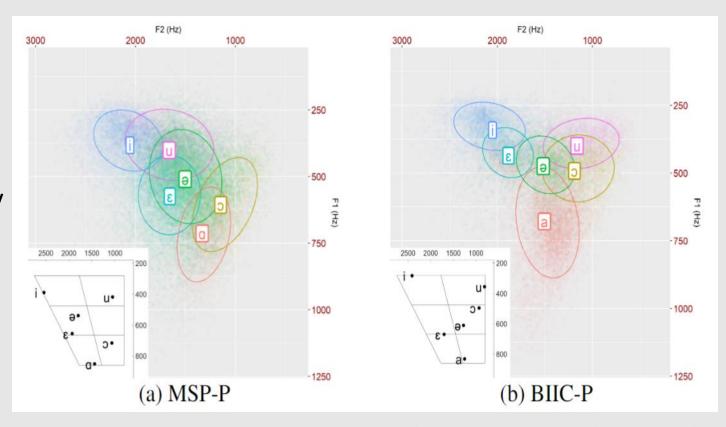


Figure 1. The vowel space using the first two formants (F1 and F2).

Phonetic Analysis: Vowel triangle plot

- First, data are normalized using the Nearey normalization to remove speaker differences due to individual vocal tract disparities and gender
- Example, for Neutral speech, closest distances across languages for vowels are /i/ and /ə/
- These vowels are potential candidates for serving as anchors in our transfer learning strategy

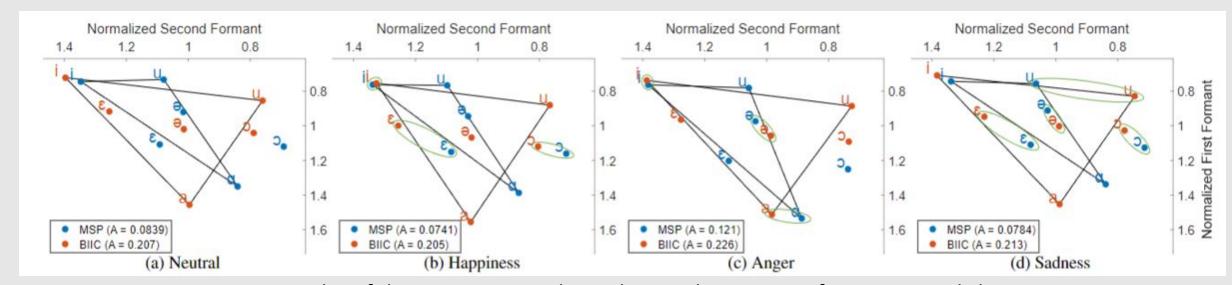


Figure 2. A plot of the average F1 and F2 values with respect to four emotional classes

Emotion-Specific SER Analysis

 Within-Corpus Vowel Discriminability Analysis: Matched conditions

Neutral, SER models for /*i*/ and /*a*/ lead to better UAR for both corpora

Happiness, the SER models for /i/, /a/, and /a/Anger, the SER models for /a/, and $/\epsilon/$ Sadness, the SER models for $/\epsilon/$, /a/, and /u/

 Cross-Lingual Vowel Discriminability Analysis: Mismatched conditions

Models with MSP-P corpus do not work well in recognizing emotions for the BIIC-P samples

Sadness, the SER model for /ɔ/ shows low performance, even in the matched condition /ɔ/ have relatively good performance for both languages

		Neutral		Happiness		Anger		Sadness	
		UAR	Ехр	UAR	Ехр	UAR	Exp	UAR	Exp
/i/	$M \rightarrow M$	77.78	G	76.47	GB	73.36		65.30	
	$\mathbf{B} \to \mathbf{B}$	77.62		75.04		72.53		67.87	
	$\mathbf{M} \to \mathbf{B}$	60.80		60.28		60.19		59.96	
/ε/	$M \rightarrow M$	69.45		73.90		75.78	G	67.34	G
	$\mathbf{B} \to \mathbf{B}$	75.66		68.24		75.22		70.19	
	$\mathbf{M} \to \mathbf{B}$	58.34		60.10		55.53		51.76	
/ə/	$\mathbf{M} \to \mathbf{M}$	76.34	GB	75.78	G	73.65		64.35	w
	$\mathbf{B} \to \mathbf{B}$	77.15		75.50		72.52		65.19	
	$\mathbf{M} \to \mathbf{B}$	61.55		63.23		63.89		50.40	
/a/	$\mathbf{M} \to \mathbf{M}$	69.36	w	75.61	G	76.56		67.45	
	$\mathbf{B} \to \mathbf{B}$	75.31		74.31		75.14	G B	68.34	
	$\mathbf{M} \to \mathbf{B}$	61.93		61.41		61.45		53.02	
/c/	$\mathbf{M} \to \mathbf{M}$	74.38		72.53	w	70.89		68.76	
	$\mathbf{B} \to \mathbf{B}$	76.19		70.99		74.62		70.82	G B
	$\mathbf{M} \to \mathbf{B}$	58.93		57.82		59.20		58.48	
/ u /	$M \rightarrow M$	76.45		77.01		70.35	w	66.89	G
	$\mathbf{B} \to \mathbf{B}$	73.36		71.23		72.29		69.28	
	$\mathbf{M} \to \mathbf{B}$	51.04		52.69		53.02		52.24	

Anchor-based Cross-lingual SER: Architecture

$$L_{ec} = \mathbb{E}_{X_S, y_S}[||CE(T(X_S), y_S)||]$$

$$L_{ad} = \sum_{i}^{N} \left[d\left(f\left(X_{i}^{t_{ph}}\right), f\left(X_{i}^{S_{p_{ph}}}\right)\right) - d\left(f\left(X_{i}^{t_{ph}}\right), f\left(X_{i}^{S_{n_{ph}}}\right)\right) + \alpha \right]$$

$$L_{ec} = L_{ec} + L_{ad}$$

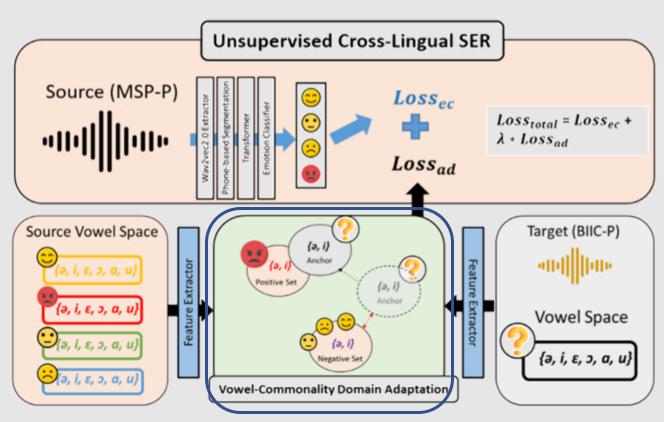


Figure 3. Proposed cross-lingual SER architecture

Anchor-based Cross-lingual SER: Performance Table

- Group-vowel-anchored (GA-CL) for unsupervised cross-lingual SER outperforms (in absolute UAR gains)
 - GA-CL ↔ CL : 6.89%
 - GA-CL ↔ FM-CL : 2.72 %
- Single vowel as Anchor
 - Best-vowel-anchored (BA-CL)
 - Worst-vowel-anchored (WA-CL)
 - BA-CL ↔ WA-CL : significant gain in Happiness and Anger

Models	4-category	Neutral	Happiness	Anger	Sadness
CL	51.75	65.61	62.77	64.47	58.53
FM-CL	56.92	70.40	67.32	69.83	65.59
GA-CL	58.64	72.83	69.69	70.15	68.17
BA-CL	55.33	70.23	68.74	67.83	63.91
WA-CL	55.21	70.43	61.45	66.26	64.62

Table 2. Cross-lingual SER performance (in UAR) with proposed group-vowel-anchored (GA-CL), feature-matching (FM-CL), and some ablation results with best-vowel-anchored (BA-CL) and worst-vowel-anchored (WA-CL)

Conclusion

- Proposed a phonetic anchoring mechanism for unsupervised crosslingual SER
 - Based on initial evidence of emotion-specific commonality of vowels
- Emotion-specific commonality analysis indicated that some vowels are more similar between corpora after emotion modulations
- The contrastive learning approach used these vowels as phonetic constraints to control the variability between two languages
 - Enhancing the learning for unsupervised cross-lingual SER
- The proposed model GA-CL (58.64%) of UAR outperforms the FM-CL (56.92%) and CL (51.75%) baselines models

Future Work

- Merge this novel phonetic knowledge-driven anchoring mechanism with recent SOTA approaches on domain adaptation for better generalization
- Include common ground consonants (particularly fricatives, affricates, and approximants) to improve cross-lingual SER performances

Thank You!

