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ABSTRACT  Audio-visual emotion recognition (AVER) has been an important research area in human-
computer interaction (HCI). Traditionally, audio-visual emotional datasets and corresponding models derive
their ground truths from annotations obtained by raters after watching the audio-visual stimuli. This con-
ventional method, however, neglects the nuanced human perception of emotional states, which varies when
annotations are made under different emotional stimuli conditions—whether through unimodal or multi-
modal stimuli. This study investigates the potential for enhanced AVER system performance by integrating
diverse levels of annotation stimuli, reflective of varying perceptual evaluations. We propose a two-stage
training method to train models with the labels elicited by audio-only, face-only, and audio-visual stimuli. Our
approach utilizes different levels of annotation stimuli according to which modality is present within different
layers of the model, effectively modeling annotation at the unimodal and multi-modal levels to capture the
full scope of emotion perception across unimodal and multimodal contexts. We conduct the experiments
and evaluate the models on the CREMA-D emotion database. The proposed methods achieved the best
performances in macro-/weighted-F1 scores. Additionally, we measure the model calibration, performance
bias, and fairness metrics considering the age, gender, and race of the AVER systems.

INDEX TERMS Multimodal learning, emotion recognition, audio-visual sentiment analysis, affective com-

puting, emotion analysis, multi-label classification.

I. INTRODUCTION

Audio-Visual Emotion Recognition (AVER) is integral to
human-computer interaction (HCI). AVER is a technology
that identifies human emotions by analyzing expressive sig-
nals within audio and visual channels [1]. AVER relies
on audiovisual data annotated by humans to provide per-
ceptual evaluations that describe perceived emotions. Video
clips comprise audio and visual components, and it is stan-
dard to obtain from the video separate audio and visual
streams, then employ a unified ground truth label for training
the model based on the annotators’ combined audio-visual

perception [2], [3], [4]. However, human perception of emo-
tions can vary when the modality of the emotional stimulus
changes [5]—for example, when data contains only voice
signals without corresponding visual cues, or vice versa.
Furthermore, the emotional information conveyed in speech
and facial features is different, so it is not clear that the
audio-visual label is appropriate to describe the information
individually conveyed in these modalities. This study seeks
to explore whether a combination of labels derived from
voice-only, face-only, and audio-visual stimuli can enhance
the performances of the AVER systems.
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In the field of AVER, studies have adopted methods
that leverage audio-visual signals through distinct processing
layers. These models typically process audio-only and visual-
only inputs in isolation, followed by their integration using
some different fusion techniques such as feature-level [6],
[7], decision-level [8], [9], or model-level integration [10],
[11]. We hypothesize that models may exhibit improved learn-
ing when the audio-only and visual-only layers are trained
with a combination of labels derived from audio-only and
audio-visual stimuli for acoustic layers and video-only and
audio-visual stimuli for visual layers. This hypothesis aligns
with the premise that multimodal systems should incorpo-
rate distinct cues from heterogeneous dimensions and shared
spaces [12], acknowledging that while modality fusion can
amplify signals, it should not overlook the unique characteris-
tics inherent to each modality [13].

We propose a two-stage training strategy to incorporate
audio-only, video-only and audio-visual labels. In the initial
stage, the model is trained with separate audio and visual in-
puts using labels generated from the corresponding unimodal
stimuli, along with separate unimodal layers that incorporate
audio-visual stimuli. In the second stage, we fix the weights of
the models from the first stage and introduce additional layers
to process the outputs from these models. Training continues
with labels derived from audio-visual stimuli to enable our
model to integrate information from both audio and visual
channels within our shared layers.

In this study, alongside examining the proposed methodol-
ogy, we conduct an ablation study by training models with
either audio-only or video-only inputs, using labels derived
from audio-only, video-only, or audio-visual stimuli. For the
audio input encoding, we employ the WavLM Large model,
which has demonstrated superior performance in emotion
recognition tasks according to the SUPERB leaderboard [14].
For the visual input encoding, we select the Mobilenetv2 [15]
as the primary backbone. Our experiments are carried out
on the CREMA-D emotion dataset [16], which is the only
corpus that includes emotional annotations based on voice-
only, face-only, and audio-visual stimulus modalities. The
CREMA-D dataset also provides demographic characteristics
of the speakers, such as gender, age, and race, enabling us
to assess performance bias and fairness within AVER sys-
tems. Additionally, we examine the model’s calibration level.
The contributions and findings of this work are listed as
follows:

® A training strategy for AVER systems with a

mixture of unimodal and audio-visual-rated labels,
which achieves better recognition rates and model
calibration.

® The paper extensively evaluate AVER model calibration,

performance bias, and fairness across demographics

e The proposed approach has higher recognition rates,

when we evaluate the performance using a multi-
label formulation to accommodate the co-occurrence of
emotions.
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Il. RELATED WORK AND BACKGROUND

A. IMPACT OF AUDITORY AND VISUAL MODALITIES
Emotional cues can be conveyed via various modalities,
such as voice and facial expressions. The information is not
conveyed the same across modalities, since each modality
provides a unique perspective in the expression of emotions.
Therefore, it is expected that the perceived emotion will vary
depending on the available modality. Paulmann et al. [5]
revealed that humans have different emotional perceptions de-
pending on stimulus (e.g., audio, video). Humans have higher
recognition of decoding emotions from multi-modal emo-
tional stimuli than the uni-modal stimuli (e.g., voice-only or
face-only). Rigoulot et al. [17] conducted experiments to an-
alyze the effects of vocal cues on facial expression. Focusing
on four basic emotions (fear, anger, happiness, and a neutral
state), the authors found that the presence of both acoustic and
visual cues offers supplementary guidance for decoding emo-
tional cues in facial expressions. Among the four emotions
considered in this study, this phenomenon was notably more
pronounced in the processing of fear, indicating that acoustic
channels significantly enhance the interpretation of emotional
cues in facial expressions. Yu et al. [18] worked on exploring
different levels of modality cues by auto-generating unimodal
labels and using a multi-task approach to train their model.
The above studies indicate differences in the perception of
emotion depending on the particular modality that is available.
Using multimodal data can also provide richer training in-
formation, which can help mitigate challenges related to data
limitations [19]. Hence, we aim to utilize the labels perceived
by humans from unimodal and multimodal-based stimuli for
training an AVER system. We expect that AVER systems us-
ing these labels can achieve better performance in recognizing
emotions from audio-visual data.

B. MULTI-LABEL EMOTION RECOGNITION

Emotion perception is naturally subjective because of differ-
ent emotional experiences, cultures, and gender. It is common
to see disagreement among raters when they are elicited by the
same emotional stimulus. Most previous computational stud-
ies about emotion recognition regard disagreement as noise
and define the emotion recognition task as a single-label task.
However, the emerging semantic space theory [20] concluded
that emotion perception is high-dimensional, and blended
after collecting self-reports to describe emotion perception
elicited by emotional images, face videos, audio, music, and
speech. Therefore, we summarize prior works that formu-
late emotion recognition as a multi-label task, highlighting
the varied methodologies adopted to address discrepancies in
emotional annotations.

1) FACIAL EXPRESSION RECOGNITION

Previous studies [21], [22] have demonstrated that a single
facial expression can simultaneously convey multiple emo-
tions. To accommodate this complex phenomenon, previous
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study transformed traditional categorical labels into distri-
butional labels. By employing distributional label learning
techniques [23], they trained facial expression recognition
systems to interpret these nuanced labels. This approach al-
lows for the representation of multiple emotions within a
single dataset entry, capturing both predominant and minor
emotions through the distributional labels. Unlike conven-
tional methods that rely on single labels, this distributional
labeling strategy effectively captures the complexity of mixed
emotions.

2) SPEECH EMOTION RECOGNITION

Most prior research on speech emotion recognition (SER)
treats this problem as a single-label task, often excluding data
samples lacking consensus labels. The approaches use tech-
niques such as plurality [24] or majority voting [25] to define
an emotional state. However, studies [26], [27], [28] have
demonstrated that utilizing distributional labels (also known
as soft labels) during the model training stage can improve the
performance of SER systems on single-label test sets. Riera
et al. [29] argued against removing any data from the test
set to accurately assess the real-world performance of SER
systems. Furthermore, Chou et al. [30] proposed considering
all emotional ratings to compute distributional labels based
on the frequency of each emotion. Assuming that multiple
raters annotated a file, they introduce a threshold to convert the
distributional predictions of the system into binary decisions.

3) AUDIO-VISUAL EMOTION RECOGNITION

In the field of AVER, the most common approach in prior
studies [31], [32] has been to treat disagreements among
raters as noise, opting for aggregation rules to establish a
consensus emotion as the ground truth. In this work, we adopt
a broader definition of emotional states and investigate the
presence of multiple emotional states within a single data
sample. To model this complexity, we draw inspiration from
Chou et al. [30] for determining the learning target. We then
apply a thresholding method to obtain multi-hot labels, which
serve as the basis for evaluating our model’s performance.

I11. TASK DEFINITION

Previous studies typically frame AVER as a single-label
recognition task, discarding data points lacking annotator
consensus. This strategy simplifies the test set but does not
reflect practical scenarios where predictions are required for
all samples. Notably, these discarded data points often exhibit
ambiguous cues that evoke multiple coexisting traits. In this
work, we consider all perceived annotations and formulate
the task as a multi-label recognition problem. We calculate
the proportion of the evaluations assigned to each emotional
class by the annotators, forming a distribution. We select all
the emotional classes with proportions above a given thresh-
old. We use the threshold 1/C to binarize the distribution
probabilities, which is the approach followed in previous stud-
ies [29], [33]. C is the number of emotional classes. This
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step removes emotions that are not consistently provided by
annotators, reducing label noise. As a result, we create a
multi-hot vector which allows each sample to contain multiple
emotions.

In this work we convert the raw annotations into the train-
ing/testing labels obtained using unimodal and multimodal
labels. We consider all labels elicited by voice-only, facial-
only, and audio-visual stimuli. The labels are distributional
labels for the training stage, and are converted into binary
vectors when the values are higher than the defined threshold.
We allow the samples to have more than one emotion to reflect
the nature of emotion perception that could involve mixed
emotions from a psychology perspective [20].

IV. METHODOLOGY

This section presents our proposed two-stage training strategy
to consider unimodal and multimodal labels. We implement a
framework based on a previous audio-visual emotion recog-
nition research, the versatile audio-visual learning (VAVL)
model [11], which presents a basic structure that perfectly fits
our explored methodology, facilitating the implementation of
a two-stage training system. In the first stage, the model is
trained on a blend of labels derived from both multimodal
and unimodal perceptions of emotion. Subsequently, in the
second stage, its shared layers are further trained on perceived
labels generated from multimodal stimuli. This strategy aims
to recognize modality-specific cues that are specifically found
in either speech or facial expressions, and general trends that
only appear when multimodal stimuli are available.

A. VERSATILE AUDIO-VISUAL LEARNING MODEL

First, we briefly describe the VAVL methods, highlighting the
reasons why this audio-visual model fits our training strat-
egy. VAVL employs a versatile combination of acoustic-only
and visual-only layers that independently process audio-visual
content before merging into shared layers for joint learning.
This framework fits well our two-stage approach, allowing us
to independently train the acoustic-only and visual-only layers
in the first stage. In stage 2, we integrate these now-frozen
layers with a series of shared layers to perform audio-visual
prediction using audio-visual labels.

B. USING MIXTURE OF EMOTION PERCEPTION
This section explains the two-stage training system with a
mixture of emotion-perceived labels. An overview of our pro-
posed approach is presented in Fig. 1. We provide additional
details on the framework configuration in Section V-D.
During stage 1, we concentrate on training the unimodal
layers of our model, specifically focusing on the acoustic
layers (depicted with green blocks in Fig. 1(a)) and the
visual layers (illustrated with orange blocks in Fig. 1(a)). This
initial stage involves separate training for the acoustic and
visual components. The acoustic layers are divided into two
equal sets: one set is trained using voice-only labels, while
the other is adjusted using labels from audio-visual stimuli.
Similarly, the visual layers are also split into two equal sets,
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(a) Stage 1 training. At this stage the visual and acoustic model layers
are trained separately.
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(b) Stage 2 training. At this stage the acoustic and visual model layers
trained from stage 1 are frozen, we then implement the shared layers
and audio-visual prediction layers to be trained.
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FIGURE 1. Overview of our two-stage training method.

with one set trained on facial-only labels and the other refined
with audio-visual labels. The motivation for splitting the lay-
ers in this manner is to harness the distinct and complementary
information captured by each modality when exposed to both
unimodal and multimodal stimuli labels. We aim to preserve
the unique characteristics of each sensory input, ensuring
that no valuable information is disregarded. As listed in Sec-
tion V-C, we include baselines that ablate the importance of
using this strategy in our result in Section VI to demonstrate
the efficacy of our approach.

After completing stage 1, the pre-trained blocks from the
acoustic module (learnable weighted sum (LW-Sum) and
transformer layers) and the visual module (1D convolutional
neural network (CNN) and transformer layers) are frozen.
Then, we integrate the shared layers (illustrated with purple
blocks in Fig. 1(b)) into the model. The second stage involves
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training solely the shared layers, utilizing the audio-visual
perceived labels as the learning target. Inputs from both the
acoustic and visual layers are sequentially fed through the
shared layers, incorporating residual connections during this
process. For the final audio-visual prediction, we employ az-
tentive statistics pooling (AS-Pool) on all audio and visual
outputs from the shared layers and merge these outputs to
feed into the fully-connected (FC) layers for making the audio-
visual predictions

V. EXPERIMENTAL SETTINGS
A. DATASET
This study employs the CREMA-D corpus [16] to train and
evaluate the proposed strategy. CREMA-D is an audiovisual
dataset featuring high-quality recordings from 91 actors (48
male, 43 female) of diverse racial and ethnic backgrounds,
performing sentences with specific emotional intent. The
dataset includes 7,442 clips, each evaluated by an average of
7 raters, totaling 5.26 hours of data. Sentence durations range
from 0.51 to 5.01 seconds, with a mean of 2.54 seconds.
CREMA-D’s unique labeling strategy involves perceptual
evaluations under three conditions—audio-only, video-only,
and audio-visual-—making it particularly suited for our study.
To the best of the authors’ knowledge, this is the only multi-
modal emotional dataset with this labeling approach, making
it ideal for our proposed methodology. We approach the
AVER problem in CREMA-D as a six-class multi-label clas-
sification task with speaker-independent data splits, covering
anger, disgust, fear, happiness, sadness, and neutral states. The
dataset’s demographic details allow us to conduct a compre-
hensive fairness evaluation of the trained AVER systems.

B. EVALUATION METRICS

1) EMOTION RECOGNITION

In our evaluation framework, we utilize the macro-F1 score
and weighted-F1 score, which are the most suitable metrics
for our task since it simultaneously assess recall and precision
rates, to provide a balanced measure of the AVER systems’
performance. Our evaluation process adopts a threshold-based
approach [29] for scenarios involving multi-label classifica-
tions to accurately identify the target classes from the ground
truth data. Specifically, a prediction for a particular class is
deemed correct if its proportional representation among all
predictions exceeds the threshold of ( 1/C), where C is the
total number of emotional classes under consideration, as
shown in [33]. Utilizing this approach allows for a nuanced
and precise calculation of F1 scores, effectively capturing the
performance of our emotion recognition systems in recog-
nizing a wide range of emotional states even in imbalanced
scenarios.

2) MODEL CALIBRATION

We assessed the calibration of AVER system predictions using
the Brier Score (BS) [34], calculated for each emotion and
averaged. BS values range from 0 to 1, with lower scores
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indicating better calibration. The averaged BS is given by:

L (LS fpe ey
BS:EZ JWZ(P"_Ti) (1)

e=1 i=1

where C is the number of emotion classes, e denotes an emo-
tion, N* is the sample count for emotion e, Pf is the predicted
probability, and T} is the ground truth (0 or 1). The Brier
Score was chosen for its ability to jointly capture accuracy
and calibration, offering a continuous metric that avoids the
potential biases introduced by the binning process required
in alternatives such as the expected calibration error (ECE).
Additionally, its straightforward calculation and adaptability
to multi-label settings make it a robust choice for assessing

probabilistic quality across multiple emotion classes.

3) PERFORMANCE BIAS

We define performance bias as the difference in macro-F1
scores across demographic groups (gender, age, race). The
Macro-F1 Bias is calculated as:

' 1 G G
Bias = 3 X mean ; ; |Ag —A,'})#g 2)

where g and i represent groups, G is the total number of
groups, and Ag and A; are the macro-F1 scores for groups g
and i. Lower bias values indicate less performance disparity
across groups.

4) FAIRNESS

We evaluate fairness using demographic parity difference
(DPD) and equalized odds difference (EOD) across gender,
race, and age. Lower DPD values indicate more uniform se-
lection rates across groups, while lower EOD values suggest
more equitable rates of true/false positives/negatives.

C. BASELINE MODELS

We implement a series of experiments to validate the pro-
posed method. We investigate the impact of the diverse levels
of annotation stimuli and the integration of these perceptual
evaluations on the performances of the AVER models. All the
following models are trained with a class-balanced objective
function, originally proposed by Cui et al. [35], to address the
imbalanced annotation distributions and ensure the accuracy
and calibration of the emotion recognition systems. We evalu-
ate several models, which We list by an index. We include the
model index in the tables to refer to the models.

1) BASELINES WITH UNIMODAL OR MULTIMODAL LABELS
® Models indexed from 1 to 3 only process the acoustic
inputs and are trained utilizing perceptual evaluations
elicited by audio-only, voice-only, or audio-visual (AV)
modalities, respectively. These models are employed us-

ing one of the sets of the green acoustic layers shown in
Fig. 2(a).
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FIGURE 2. Figure illustrates the baseline models indexed as 1 to 9. Where
models indexed 1 to 3 are audio-only, models indexed 4 to 6 are
visual-only, and models indexed 7 to 9 are audio-visual.

® Models indexed from 4 to 6 only process the visual
inputs and are trained utilizing perceptual evaluations
elicited by audio-only, voice-only, or audio-visual (AV)
modalities, respectively. These models are employed by
using one of the sets of the orange visual layers shown
in Fig. 2(b).

® Models indexed from 7 to 9 incorporate both acoustic
and visual inputs and are trained utilizing perceptual
evaluations elicited by audio-only, voice-only, or audio-
visual (AV) modalities, respectively. These models fol-
low the overall structure presented in Fig. 2(c); where
employ the use of a single set of layers for each modality
before the shared layers and we train all layers in one
single step.

2) TWO-STAGE APPROACH
Fig. 1 presents our proposed two-stage approach. In this
section, we implement alternative versions of our two-stage
models to understand the contributions of our model selection.
We also index the models, including these indexes in the result
tables.
® Model indexed as 10 represents a baseline version of our
two-stage approach, which employs the exclusive use of
the perceptual evaluations elicited by the audio-visual
modality for training in both stages. This model, indexed
with the number 10, serves as the base benchmark for
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our study. It does not incorporate acoustic layers trained
with acoustic stimuli labels or visual layers trained with
visual stimuli labels. We refer to this approach as the AV
elicited method.

® Model indexed with the number 11 contrasts with model
10 by exclusively utilizing acoustic layers trained with
acoustic stimuli labels and visual layers trained with
visual stimuli labels in the first stage. The shared layers
in the second stage are then trained using the perceptual
evaluations elicited by the audio-visual modality. We
refer to this approach as the Mixed elicited method.

® Model indexed with the number 12 corresponds to our
final proposed methodology, which we refer to as the
Proposed method.

3) STATE-OF-THE-ART BASELINES

Additionally, we benchmarked five AVER frameworks to
evaluate our proposed model, utilizing code from their respec-
tive repositories or specifications from their associated papers.

VAVL: Goncalves et al. [11] proposed the VAVL frame-
work, which combines acoustic-only and visual-only layers
for processing, followed by shared layers for joint feature
learning.

MulT: Tsai et al. [38] introduced the MulT method, a cross-
modal transformer originally for human language time series.
We adapted it for bimodal representations, focusing on visual
and acoustic features.

SFAV: Chumachenko et al. [36] developed the SFAV ap-
proach, which uses late and intermediate transformer fusion
techniques to handle incomplete audiovisual data.

AuxFormer: Goncalves and Busso [31] presented the Aux-
Former architecture, a model using transformer layers, auxil-
iary networks, and modality dropout for robust cross-modal
representations.

TSLTM: Huang et al. [37] proposed the TSLTM method,
integrating transformers and long short-term memory (LSTM)
networks to fuse audio and visual data, modeling long-term
emotional dynamics.

D. IMPLEMENTATION DETAILS

1) ACOUSTIC AND VISUAL FEATURES

Within the CREMA-D corpus, we have access to raw video
and audio recordings, enabling the extraction of features from
both audio and visual modalities. Our acoustic feature extrac-
tion leverages the pre-trained WavLM-large architecture [39],
sourced from Hugging Face at “microsoft/wavlim-large.” This
model comprises 24 transformer layers and approximately
317M parameters. For feature extraction, we follow the ap-
proach used in previous studies [14], utilizing the frozen
pre-trained WavLM model to extract features from the output
hidden states of all 24 transformer layers, as well as from
the hidden state output of the WavLM model’s 1D CNN en-
coder. Consequently, each audio sequence processed by our
WavLM feature extractor yields a feature set denoted as x, €
RNax25x1,024 " where N, represents the sequence length of
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the acoustic feature, 1,024 is the dimensionality of the hidden
states, and 25 corresponds to the total number of hidden states
from which features are extracted.

To extract emotional visual features from facial images, we
employ a CNN-based model, specifically the pre-trained Mo-
bileNetV2 [15] model. We fine-tuned the MobileNetV2 model
for facial expression recognition on the AffectNet [40] for 60
epochs, saving the weights of the model that achieves the best
validation accuracy score. Once the model has been trained,
we proceed to freeze the weights, enabling us to extract facial
features from images extracted from videos within the dataset
used in this study. We crop the image using the bounding box
provided by a face detection algorithm and rotate the image to
ensure that the line connecting the two eyes is parallel to the
x-axis, thereby normalizing the image for consistent feature
extraction. Finally, we feed the normalized image through
our trained MobileNetV2 model. We use the 1,280-feature
vector, extracted post-global pooling layer, as the feature rep-
resentation for each image. Consequently, the feature set for
each visual sequence extracted by our MobileNetV?2 feature
extractor is denoted as x, € R¥>*1.280 where N, denotes the
number of frames in the sequence, and 1,280 represents the
dimensionality of the features from the MobileNetV2 model’s
global pooling layer.

2) MODEL CONFIGURATION AND TRAINING SETTINGS
Fig. 1(b) illustrates the entire framework of the model. The
visual, acoustic, and shared layers are constructed using trans-
former blocks, each with an encoder hidden layer of 512
dimensions and eight attention heads. The acoustic, visual,
and shared transformer layers consist of three, three, and
two layers, respectively. The transformer block follows the
standard structure of multi-head attention (MHA) layers, as
introduced in [41]. Within the transformer block, the input
is used to generate the Q, K, and V matrices. The attention
mechanism is computed simultaneously for a set of queries,
which are aggregated into a single matrix Q. Similarly, the
keys and values are aggregated into matrices K and V, respec-
tively, as described in (3).
T
oK )V (3)

Nz

where dj, is the dimensionality of the key vectors. The scaling
factor +/d; prevents the dot product between Q and K
from becoming too large, ensuring stable gradients in the
softmax function. MHA allows the model to attend to multi-
ple representation subspaces simultaneously, overcoming the
limitations of single-head attention. It is computed as:

Attention(Q, K, V) = softmax (

MultiHead(Q, K, V) = Concat(head;, ..., head,)W?, (4)

where each attention head is defined as:
head; = Attention(QW.2, KWX, vwY). (5)
here, VVlQ c Rdmodelek’ ‘/ViK e ]Rdmodelek’ VViV c RdmodSIde’

and WO e R/v*dmotel gre Jearnable parameter matrices.
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The features input to each specific layer, as shown in
Fig. 1, are processed as follows: the visual feature extraction
output is denoted as x, € RMvx1.280 wwhile the acoustic fea-
ture extraction output is x, € RNe*23x1.024 Ty align these
feature dimensions with the corresponding transformer layers,
we apply distinct operations to the audio and visual inputs:

1) For the audio features, a Learnable Weighted Sum (LW-
Sum) layer is used to aggregate the 25 extracted layers
into a single feature matrix. Specifically, the weighted
sum is computed as:

25
o=y wi-x, (6)

i=1

where xff) € RNax1,024 represents the i-th extracted

layer, and w; are learnable weights constrained by

21221 w; = 1 (enforced using a softmax layer). This

operation results in the matrix z, € RM*1.024 for each
batch sequence.

2) For the visual features, a 1D convolutional neural net-
work (1D-CNN) layer is employed to adjust the feature
dimension from 1,280 to 1,024. The operation is defined
as:

zy = ReLU(Conv1D(xy)), @)

where Conv1D applies a convolution with kernel size
k, stride s, and output channels 1,024, transforming
x, € RNvX1.280 into 7 RNvx 1,024
By applying these operations, both audio and visual fea-
tures are aligned to RM*1:024 ensuring compatibility with
the transformer layers. At the model’s head, attention-statistic
pooling (AS-Pool) layers [42] are employed to aggregate
frame-level features into a fixed-length representation. AS-
Pool layers compute a weighted mean and variance across the
input sequence, where the weights are determined by an atten-
tion mechanism. This mechanism ensures that the model can
dynamically focus on the most informative parts of the input
sequence, adapting to varying temporal dynamics in the data.
Then, we follow with fully connected (FC) layers, that are
utilized for prediction. These pooling layers use an attention
mechanism to assign different weights to various frames from
the transformer layers’ outputs. The model is optimized using
the AdamW optimizer, configured with a learning rate (1r) of
1 x 1072, a weight decay of 5 x 1077, and beta parameters
of 0.95 and 0.999. Training is conducted over 50 epochs with
a batch size of 32. All experiments were done in a NVIDIA
A100 48Gb, and the total of GPU hours are around 500 hours
within a single NVIDIA A100 GPU.

VI. RESULTS AND ANALYSES

In this section, we discuss the outcomes derived from im-
plementing our proposed methodology. We train the models
indexed from 1 to 9 to reveal the impact of perceptual evalu-
ation elicited by the varying modalities on the audio-visual
condition. Results in Table 1 show that the models trained
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TABLE 1. Overview of Models Performances

Index | Audio Video | Elicited

Macro F1 1 Weighted F1 1

1 Voice | 0.645 (0.638, 0.652) 0.650 (0.643, 0.656)
2 oo Face 0.654 (0.647, 0.661) 0.661 (0.655, 0.668)
3 AV 0.695 (0.688, 0.701) 0.699 (0.694, 0.705)
4 Voice | 0.568 (0.560, 0.574) 0.570 (0.564, 0.576)
5 - Face 0.632 (0.626, 0.639) 0.634 (0.627, 0.641)
6 AV 0.658 (0.652, 0.665) 0.657 (0.650, 0.663)
7 Voice | 0.674 (0.668, 0.681) 0.672 (0.666, 0.678)
8 VR Face 0.719 (0.712, 0.725) 0.719 (0.713, 0.725)
9 AV 0.762 (0.757, 0.768) 0.761 (0.756, 0.766)
10 AV 0.763 (0.757, 0.768) 0.758 (0.753, 0.763)
11 oo/ Mixed | 0.769 (0.764, 0.774) 0.764 (0.759, 0.769)
12 Proposed | 0.772 (0.766, 0.777) 0.767 (0.762, 0.772)

We use similar structure to previous tables. The columns, Macro-F1 and Weighted-F1, show
the average macro-F1 and weighted-F1 scores, the lower, and upper bound of the confidence
interval between 2.75% and 97.5%. Bold results assert statistical significance.

TABLE 2. Overview of Our Proposed Approach and Other SOTA AVER

Audio Video | Model |  Macro F1 ¢ Weighted F1 1
Ours 0.772 (0766, 0.777 0.767 (0.762, 0.772)
VAVL [11] | 0.762 (0.757, 0.768) 0.761 (0.756, 0.766)
AuxFormer [31] | 0.742 (0.737, 0.748) 0.741 (0.734, 0.747)
o/ SFAV [36] 0.731 (0.725, 0.737) 0.728 (0.723, 0.734)
TLSTM [37] | 0.710 (0.704, 0.716) 0.705 (0.699, 0.711)
MulT [38] 0.743 (0.738, 0.750) 0.741 (0.736, 0.748)

Results are reported with Macro-F1 and Weighted-F1, show the and confidence interval
between 2.75% and 97.5% for each result. Bold results assert statistical significance.

with the audio-visual labels achieve the best values in macro-
F1 and weighted-F1 scores. Overall, audio-visual label usage
leads to a relative improvement of 12.08% and 5.49% com-
pared to the voice-only and face-only labels in the macro-F1
score, respectively. Also, the models that can take both acous-
tic and visual inputs lead to better performances than those
with unimodal input, achieving a relative improvement of
8.07% and 15.95% compared to the acoustic-input and visual-
input models in the macro-F1 score, respectively. The results
are aligned with the findings in Paulmann and Pell [5], which
showed that humans perform better in processing emotional
cues on audio-visual stimuli than on unimodal stimuli.

Regarding the two-stage models, notably, the performances
of models indexed as 11 (mixed) and 12 (proposed), which
integrate the mixture of the pre-trained models trained with
the perceptual evaluation elicited by varying modalities, sur-
pass that of the model solely focused on audio-visual labels
(model indexed as 10). These findings indicate that percep-
tual evaluations elicited by diverse stimuli modalities contains
supplementary emotional cues, augmenting the effectiveness
of AVER systems.

Table 2 presents additional results, directly comparing our
proposed method against SOTA AVER baselines. We observe
that our method consistently outperforms the SOTA AVER
methods with statistical significance in all cases.
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TABLE 3. Overview of Audio-Visual Emotion Recognition Performances for Each Emotion in F1 Scores and the Measure of Model Calibration as the

Average Brier Score (BS)

Index | Audio Video | Elicited | Anger Sadness Disgust Fear Neutral Happiness ‘ BS |
1 Voice 0.713 (0.695, 0.730) 0.603 (0.583, 0.622) 0.607 (0.588, 0.624) 0.607 (0.589, 0.623) 0.709 (0.699, 0.720) 0.631 (0.609, 0.654) | 0.158
2 v - Face 0.683 (0.665, 0.700) 0.546 (0.527, 0.566) 0.641 (0.625, 0.658) 0.572 (0.553, 0.590) 0.760 (0.750, 0.772) 0.720 (0.704, 0.739) | 0.155
3 AV 0.735 (0.718, 0.753) 0.614 (0.594, 0.632) 0.664 (0.649, 0.680) 0.668 (0.652, 0.684) 0.761 (0.751, 0.774) 0.725 (0.708, 0.742) | 0.146
4 Voice 0.507 (0.489, 0.525) 0.528 (0.510, 0.548) 0.571 (0.556, 0.588) 0.464 (0.445, 0.483) 0.646 (0.636, 0.657) 0.688 (0.666, 0.712) | 0.184
5 - v Face 0.565 (0.546, 0.585) 0.551 (0.534, 0.571) 0.594 (0.577, 0.611) 0.553 (0.534, 0.570) 0.724 (0.712, 0.736) 0.807 (0.793, 0.823) | 0.160
6 AV 0.585 (0.565, 0.604) 0.578 (0.560, 0.594) 0.622 (0.607, 0.638) 0.580 (0.564, 0.597) 0.731 (0.720, 0.742) 0.854 (0.840, 0.868) | 0.157
7 Voice 0.722 (0.704, 0.738) 0.640 (0.619, 0.659) 0.627 (0.610, 0.644) 0.626 (0.609, 0.643) 0.705 (0.694, 0.715) 0.727 (0.708, 0.747) | 0.157
8 v v Face 0.718 (0.700, 0.736) 0.612 (0.594, 0.631) 0.676 (0.661, 0.691) 0.651 (0.632, 0.667) 0.793 (0.782, 0.804) 0.862 (0.848, 0.875) | 0.142
9 AV 0.784 (0.768, 0.801) 0.656 (0.636, 0.673 0.726 (0.711, 0.740) 0.718 (0.704, 0.734 0.811 (0.802, 0.821) 0.879 (0.866, 0.892) | 0.131
10 AV | 0.770 (0.753, 0.786) 0.668 (0.650, 0.686) 0.717 (0.704, 0.731) 0.713 (0.698, 0.727) 0.797 (0.787, 0.807 0.911 (0.900, 0.922) | 0.135
11 v v Mixed 0.793 (0.777, 0.808 0.685 (0.667, 0.702) 0.712 (0.698, 0.726) 0.712 (0.696, 0.726) 0.805 (0.795, 0.815) 0.909 (0.897, 0.919) | 0.130
12 Proposed | 0.792 (0.776, 0.808) 0.682 (0.665, 0.699) 0.722 (0.708, 0.736 0.723 (0.707, 0.736) 0.804 (0.793, 0.815) 0.909 (0.898, 0.920) | 0.129

The mark “v/” in the columns , Audio and Video, represents the models use the modality as input. The column, “Elicited”, means the training labels collected by giving which modalities as
emotional stimulus. All results contain the average, lower and upper bound of the confidence interval between 2.75% and 97.5% for each result (lower bound, upper bound) in F1 scores. We

also use the “grey” background color and bold font to show the best performances in the table.

TABLE 4. Overview of Recognition Performances, Performance Bias, and Fairness of the Audio-Visual Emotion Recognition Systems on Race Groups

Index | Audio ‘ Video | Elicited | African American Asian Caucasian Unknown ‘ MacroF1 Bias | DPD EOD
1 Voice 0.646 (0.631, 0.660) 0.632 (0.605, 0.659) 0.645 (0.636, 0.655) 0.599 (0.528, 0.662) 2.60 (5.84, 0.39) 0.052 0.098
2 v - Face 0.662 (0.648, 0.675) 0.677 (0.654, 0.699) 0.648 (0.640, 0.657) 0.616 (0.542, 0.678) 3.27(5.70, 2.18) 0.154 0.348
3 AV 0.697 (0.683, 0.709) 0.711 (0.687, 0.733) 0.694 (0.686, 0.702) 0.572 (0.503, 0.631) 7.02(9.29, 5.25) 0.052 0.205
4 Voice 0.536 (0.520, 0.551) 0.533 (0.507, 0.559) 0.582 (0.574, 0.590) 0.438 (0.356, 0.503) 7.27 (11.11, 4.50) 0.622 0.696
5 - v Face 0.638 (0.625, 0.651) 0.641 (0.615, 0.666) 0.630 (0.622, 0.639) 0.468 (0.402, 0.523) 8.79 (11.27,7.39) 0.519 0.573
6 AV 0.662 (0.648, 0.674) 0.653 (0.626, 0.677) 0.660 (0.653, 0.668) 0.464 (0.411,0.511) 9.99 (12.44, 8.39) 0.535 0.619
7 Voice 0.676 (0.662, 0.689) 0.647 (0.620, 0.672) 0.677 (0.669, 0.685) 0.630 (0.544, 0.700) 2.80(6.97, 1.42) 0.064 0.127
8 v v Face 0.716 (0.704, 0.727) 0.720 (0.697, 0.741) 0.721 (0.714, 0.728) 0.566 (0.515, 0.607) 7.80 (10.05, 6.72) 0.115 0.122
9 AV 0.759 (0.747, 0.771) 0.780 (0.758, 0.799) 0.762 (0.756, 0.770) 0.639 (0.591, 0.679) 7.15 (8.53, 6.05) 0.035 0.121
10 AV 0.765 (0.755, 0.776) 0.752 (0.729, 0.772) 0.764 (0.758, 0.771) 0.627 (0.560, 0.685) 7.12(10.32, 4.57) 0.125 0.139
11 v v Mixed 0.771 (0.761, 0.782) 0.765 (0.745, 0.784) 0.770 (0.763, 0.776) 0.619 (0.563, 0.664) 7.71 (10.30, 6.11) 0.157 0.111
12 Proposed | 0.770 (0.759,0.780)  0.769 (0.747,0.789)  0.774 (0.768,0.781)  0.668 (0.604, 0.724) | 5.31(8.39,3.25) 0.113  0.101

We use similar structure to previous tables. The column, “Macro-F1 Bias”, means the differences between the macro-F1 scores of different race groups.

A. MODEL CALIBRATION AND PER-EMOTION RESULTS
Table 3 summarizes model calibration and macro-F1 scores
per emotion. Models 1-9 show improved performance with
audio-visual labels. Our proposed method (12) achieved the
best calibration and excelled in recognizing fear. Models
11 and 12, which both utilize of our proposed approach of
combining unimodal and multimodally rated labels for train-
ing, outperformed others in anger and sadness recognition,
highlighting the effectiveness of our two-stage approach with
perceptual evaluations across diverse stimuli.

B. MEASURE OF BIAS AND FAIRNESS ACROSS GROUPS

Table 5 shows the performance, performance bias, and fair-
ness metrics for all models concerning male and female
speakers. Despite a larger proportion of male speakers in
the database, AVER systems consistently demonstrate better
emotion recognition performance for female speakers. This
performance difference can be attributed to an imbalance in
the emotion distribution between genders. Specifically, male
samples are heavily skewed toward the “Neutral” emotion,
which accounts for over 51% (2,006 out of 3,928 samples)
of the male data, compared to about 39% (1,366 out of
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TABLE 5. Overview of Recognition Performances, Performance Bias, and
Fairness of the Audio-Visual Emotion Recognition Systems on Male and
Female Groups

Idx | Male Female | Macro-F1 Bias | | EOD |
1 | 0.634(0.624,0.645)  0.653 (0.642, 0.663) | 1.86 (1.80,1.80) | 0.019
2| 0.634(0.623,0.643) 0672 (0.662, 0.681) | 381 (3.84,3.83) | 0.039
3| 0.680 (0.671,0.689)  0.708 (0.699, 0.718) | 2.80 (2.78,2.89) | 0.032
4 | 0544 (0.534,0555 0587 (0.578,0.598) | 4.32 (441,431) | 0.031
5 | 0617 (0.608, 0.626)  0.646 (0.636, 0.655) | 2.90 (2.88,2.90) | 0.075
6 | 0.643(0.633,0.653)  0.672 (0.663, 0.682) | 2.86(2.99,2.90) | 0.019
7 ] 0.662 (0.653,0.672)  0.683 (0.674, 0.692) | 2.08 (2.13,2.06) | 0.026
8 | 0.697 (0.689,0.706)  0.739 (0.730, 0.747) | 4.12 (415, 4.11) | 0.047
9 | 0747 (0739, 0755  0.776 (0.768, 0.784) | 2.89 (2.87,2.89) | 0.027
10 | 0750 (0.743,0.758)  0.774 (0.767,0.781) | 237 (2.44,235) | 0.032
11 | 0757 (0.750, 0.764) 0780 (0.773,0.788) | 235(2.34,2.35) | 0.011
12 | 0762 (0.754, 0.770)  0.781 (0.774, 0.788) | 1.86 (1.98,1.84) | 0018

The column, “Macro-F1 Bias”, quantifies the differences between the macro-F1 scores of
male and female speakers.

3,510 samples) in female data. This dominance of the “Neu-
tral” class in male samples leads the model to perform well
on this prevalent emotion but struggle with less represented
emotions such as “Angry,” “Sad,” and “Disgust.” Since the
macro-F1 score equally weights each emotion regardless of
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its frequency, the model’s difficulties with these less frequent
emotions in male data lower the overall performance metric.
In contrast, the female data exhibits a more balanced dis-
tribution of emotions, allowing the model to perform more
consistently across all emotion classes, resulting in higher
macro-F1 scores for female speakers. The imbalance in the
male dataset may also cause the model to overfit to the
“Neutral” class, reducing its ability to generalize across other
emotions within male samples. This effect is mitigated in the
female dataset due to the more even distribution of emotions,
enhancing the model’s overall performance on female data.
Although we observe this difference in performance accross
gender, our proposed method appears effective in minimizing
this performance bias between genders. Specifically, the mod-
els indexed as 11 and 12 utilizing our proposed approach rank
as the top two in performance. Furthermore, the performance
bias for these models approaches the lowest observed values
among baseline models. Although the bias in models indexed
11 and 12 is slightly above the minimum seen in baseline
models, these models exhibit a large relative improvement in
performance — 20.19% and 19.6% , respectively — over the
model indexed as 1, which has the lowest bias. Regarding
fairness, the EOD value for model indexed as 11 is the lowest
among all models, highlighting its superiority in ensuring eq-
uitable treatment across gender groups within AVER systems.

Table 4 presents the performance bias, results, and fairness
of all models across different racial groups. Models indexed
as 11 and 12 generally outperform others across all racial
categories, with the exception of the Asian group. The results
of performance bias and fairness in Table 4 underscore the ne-
cessity of employing strategies specifically aimed at reducing
bias and enhancing fairness within AVER systems.

VII. DISCUSSION AND LIMITATIONS

While we investigate the performance bias and fairness of
models across demographic groups, including gender, age,
and race, it is crucial to acknowledge that gender identity
encompasses a spectrum beyond the binary male/female [43].
For a more comprehensive analysis, a dataset with annota-
tions reflecting this broader spectrum of gender identities is
required. Moreover, our findings indicate that to effectively
reduce performance bias across racial groups, the models
require further methodologies aimed at bias mitigation. Con-
sequently, additional measures are important to enhance the
fairness of all models.

VIIl. CONCLUSION AND FUTURE WORK

This work addresses a critical gap in traditional AVER sys-
tems that rely on uniform annotations and overlook the
complexity of human emotional perception across different
stimuli. We implement models that consider a full spec-
trum of emotions by recognizing co-occurrence in samples
during training and evaluation. By integrating a two-stage
approach using labels from audio-only, face-only, and audio-
visual stimuli, our study better reflects how humans perceive
emotions through both unimodal and multimodal channels.
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This method improves our model’s accuracy in predicting
emotional states, enhancing performance on the CREMA-D
emotion database with superior macro-/weighted-F1 scores.
We extensively evaluate model calibration, performance bias,
and fairness across demographics, essential for equitable
AVER systems. Our findings indicate that AVER systems per-
form better on female speakers despite having more male data,
and our method reduces this bias. In future work, we plan to
implement additional methods during training AVER systems
to mitigate the performances bias and increase fairness.
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